动态规划 最长公共子序列

1143. 最长公共子序列

问题描述

给定两个字符串 text1text2,返回这两个字符串的最长公共子序列(LCS)的长度。如果不存在公共子序列,返回 0。

示例

输入:text1 = "abcde", text2 = "ace" 
输出:3  
解释:最长公共子序列是 "ace",长度为 3。

输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc",长度为 3。

输入:text1 = "abc", text2 = "def"
输出:0
解释:没有公共子序列。

算法思路

动态规划(DP 数组)

  1. 状态定义
    • dp[i][j] 表示 text1[0..i-1]text2[0..j-1] 的最长公共子序列长度。
  2. 状态转移
    • text1[i-1] == text2[j-1] 时:
      dp[i][j] = dp[i-1][j-1] + 1
    • text1[i-1] != text2[j-1] 时:
      dp[i][j] = max(dp[i-1][j], dp[i][j-1])
  3. 初始化
    • dp[0][j] = 0(空字符串与任何字符串无公共子序列)
    • dp[i][0] = 0(任何字符串与空字符串无公共子序列)

空间优化(一维 DP)

  • 由于 dp[i][j] 仅依赖左侧(dp[j-1])、上方(dp[j])和左上角(prev)的值,可用一维数组代替二维数组。
  • prev 保存左上角值(上一轮循环中的 dp[j]),避免覆盖。

代码实现

方法一:动态规划(DP 数组)

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length(), n = text2.length();
        int[][] dp = new int[m + 1][n + 1]; // dp[i][j] 表示 text1[0:i) 和 text2[0:j) 的 LCS 长度
        
        // 从 1 开始遍历(0 行/列已初始化为 0)
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                // 当前字符匹配
                if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    // 取上方或左侧的最大值
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[m][n];
    }
}

方法二:动态规划(空间优化)

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length(), n = text2.length();
        int[] dp = new int[n + 1]; // dp[j] 表示当前行 text1[0:i) 和 text2[0:j) 的 LCS 长度
        
        for (int i = 1; i <= m; i++) {
            int prev = 0; // 保存左上角值(dp[i-1][j-1])
            for (int j = 1; j <= n; j++) {
                int temp = dp[j]; // 保存旧值(dp[i-1][j])
                if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
                    // 状态转移:LCS 长度 = 左上角值 + 1
                    dp[j] = prev + 1;
                } else {
                    // 状态转移:取上方或左侧的最大值
                    dp[j] = Math.max(dp[j], dp[j - 1]);
                }
                prev = temp; // 更新左上角值为旧值(用于下一轮)
            }
        }
        return dp[n];
    }
}

算法分析

  • 时间复杂度:O(mn)
    需要遍历两个字符串的所有字符组合。
  • 空间复杂度
    • 二维 DP:O(mn)
    • 一维 DP:O(n)

算法过程

输入text1 = "abcde", text2 = "ace"

  1. 二维 DP 初始化
    • dp[0][*] = 0, dp[*][0] = 0
  2. 状态转移
    • i=1, j=1'a'=='a'dp[1][1] = dp[0][0]+1 = 1
    • i=1, j=2'a'!='c'dp[1][2] = max(dp[0][2], dp[1][1]) = max(0,1)=1
    • i=1, j=3'a'!='e'dp[1][3]=1
    • i=2, j=1'b'!='a'dp[2][1]=max(1,0)=1
    • i=2, j=2'b'!='c'dp[2][2]=max(1,1)=1
    • i=2, j=3'b'!='e'dp[2][3]=1
    • i=3, j=1'c'!='a'dp[3][1]=1
    • i=3, j=2'c'=='c'dp[3][2]=dp[2][1]+1=2
    • i=3, j=3'c'!='e'dp[3][3]=max(1,2)=2
    • 后续同理,最终 dp[5][3]=3
  3. 结果:3

测试用例

public static void main(String[] args) {
    Solution solution = new Solution();
    
    // 测试用例1: 标准示例
    String s1 = "abcde", t1 = "ace";
    System.out.println("Test 1: " + solution.longestCommonSubsequence(s1, t1)); // 3
    
    // 测试用例2: 完全相同字符串
    String s2 = "abc", t2 = "abc";
    System.out.println("Test 2: " + solution.longestCommonSubsequence(s2, t2)); // 3
    
    // 测试用例3: 无公共子序列
    String s3 = "abc", t3 = "def";
    System.out.println("Test 3: " + solution.longestCommonSubsequence(s3, t3)); // 0
    
    // 测试用例4: 部分公共子序列
    String s4 = "oxcpqrsvwf", t4 = "shmtulqrypy";
    System.out.println("Test 4: " + solution.longestCommonSubsequence(s4, t4)); // 2
    
    // 测试用例5: 空字符串
    String s5 = "", t5 = "abc";
    System.out.println("Test 5: " + solution.longestCommonSubsequence(s5, t5)); // 0
    
    // 测试用例6: 长字符串
    String s6 = "mhunuzqrkzsnidwbun", t6 = "szulspmhwpazoxijwbe";
    System.out.println("Test 6: " + solution.longestCommonSubsequence(s6, t6)); // 6
}

关键点

  1. 状态转移逻辑
    • 当前字符匹配:LCS 长度 = 左上角值 + 1。
    • 当前字符不匹配:取上方或左侧的最大值。
  2. 空间优化核心
    • prev 保存左上角值(dp[i-1][j-1])。
    • temp 保存上方值(dp[i-1][j]),用于更新下一轮的 prev
  3. 边界处理
    • 空字符串直接返回 0。
    • DP 数组多一行一列简化初始化。

常见问题

  1. 为什么需要 prevtemp
    prev 保存左上角值(dp[i-1][j-1]),temp 保存上方值(dp[i-1][j]),用于状态转移和值传递。

  2. 如何处理空字符串?
    初始化时 dp[0][j] = 0dp[i][0] = 0 已涵盖空字符串情况。

  3. 空间优化后如何保证正确性?
    按行更新时,prevtemp 精确保存了所需的历史状态,与二维 DP 等价。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值