算法题 搜索插入位置

LeetCode 35. 搜索插入位置

问题描述

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。请必须使用时间复杂度为 O(log n) 的算法。

示例

输入: nums = [1,3,5,6], target = 5
输出: 2

输入: nums = [1,3,5,6], target = 2
输出: 1

输入: nums = [1,3,5,6], target = 7
输出: 4

算法思路

二分查找法

  1. 初始化边界
    • 左指针 left = 0
    • 右指针 right = nums.length - 1
  2. 二分查找
    • left <= right 时循环:
      • 计算中点 mid = left + (right - left) / 2(防溢出)
      • nums[mid] == target → 直接返回 mid
      • nums[mid] < targetleft = mid + 1
      • nums[mid] > targetright = mid - 1
  3. 返回插入位置
    • 循环结束后,left 即为目标值应插入的位置

关键

  • 循环终止条件left <= right 确保所有元素都被检查
  • 插入位置
    • 目标值存在时:直接返回索引
    • 目标值不存在时:
      • 目标值小于所有元素 → left=0
      • 目标值大于所有元素 → left=nums.length
      • 目标值在数组中间 → left 指向第一个大于目标值的位置

代码实现

class Solution {
    /**
     * 在排序数组中查找目标值或插入位置
     * 
     * @param nums 排序数组
     * @param target 目标值
     * @return 目标值索引或插入位置
     */
    public int searchInsert(int[] nums, int target) {
        int left = 0;
        int right = nums.length - 1;
        
        while (left <= right) {
            // 计算中间位置(防溢出写法) mid = left
            int mid = left + (right - left) / 2;
            
            if (nums[mid] == target) {
                // 找到目标值直接返回索引
                return mid;
            } else if (nums[mid] < target) {
                // 目标值在右半区
                left = mid + 1;
            } else {
                // 目标值在左半区
                right = mid - 1;
            }
        }
        
        // 循环结束时,left即为插入位置
        return left;
    }
}

算法分析

  • 时间复杂度:O(log n)
    • 每次循环将搜索范围减半
  • 空间复杂度:O(1)
    • 仅使用常数空间

算法过程

示例1nums = [1,3,5,6], target = 2

  1. 初始:left=0, right=3
    • mid=1nums[1]=3 > 2right=0
  2. 第二轮:left=0, right=0
    • mid=0nums[0]=1 < 2left=1
  3. 循环结束:left=1

示例2nums = [1,3,5,6], target = 7

  1. 初始:left=0, right=3
    • mid=13<7left=2
  2. 第二轮:left=2, right=3
    • mid=25<7left=3
  3. 第三轮:left=3, right=3
    • mid=36<7left=4
  4. 返回 4

测试用例

public static void main(String[] args) {
    Solution solution = new Solution();
    
    // 测试用例1:目标值存在数组中
    int[] nums1 = {1,3,5,6};
    System.out.println("Test 1: " + solution.searchInsert(nums1, 5)); // 2
    
    // 测试用例2:目标值应插入中间
    int[] nums2 = {1,3,5,6};
    System.out.println("Test 2: " + solution.searchInsert(nums2, 2)); // 1
    
    // 测试用例3:目标值大于所有元素
    int[] nums3 = {1,3,5,6};
    System.out.println("Test 3: " + solution.searchInsert(nums3, 7)); // 4
    
    // 测试用例4:目标值小于所有元素
    int[] nums4 = {1,3,5,6};
    System.out.println("Test 4: " + solution.searchInsert(nums4, 0)); // 0
    
    // 测试用例5:目标值应插入末尾前
    int[] nums5 = {1,3,5,6};
    System.out.println("Test 5: " + solution.searchInsert(nums5, 6)); // 3
    
    // 测试用例6:空数组
    int[] nums6 = {};
    System.out.println("Test 6: " + solution.searchInsert(nums6, 5)); // 0
    
    // 测试用例7:单元素数组(目标存在)
    int[] nums7 = {5};
    System.out.println("Test 7: " + solution.searchInsert(nums7, 5)); // 0
    
    // 测试用例8:单元素数组(目标不存在)
    int[] nums8 = {5};
    System.out.println("Test 8: " + solution.searchInsert(nums8, 2)); // 0
}

关键点

  1. 二分查找核心

    • 通过比较中点值决定搜索方向
    • 循环条件 left <= right 确保覆盖所有情况
  2. 插入位置确定

    • 循环结束时 left 总是指向第一个大于目标值的位置
    • 若目标值大于所有元素,left 会停在 nums.length
  3. 边界处理

    • 空数组 → 返回0(插入位置)
    • 单元素数组 → 根据比较结果返回0或1

常见问题

  1. 为什么循环条件是 left <= right
    left == right 时,区间仍有一个元素需要检查,若使用 left < right 会漏查单个元素的情况。

  2. 为什么返回 left 而不是 right

    • 当目标值小于中点时:right = mid - 1,而 left 保持指向第一个大于目标值的位置
    • 当目标值大于中点时:left = mid + 1,正好指向应插入位置
    • 例如 target=2[1,3] 中,最终 left=1, right=0,插入位置为1
  3. 如何处理重复元素?
    当存在重复元素时,二分查找会返回任意一个匹配位置(题目未要求返回第一个或最后一个),但插入位置计算逻辑不变。

  4. 防溢出写法 mid = left + (right - left)/2 的意义?
    避免 (left + right) 可能超过整数最大值的情况,提高代码健壮性。

  5. 若数组中有多个相同目标值怎么办?
    题目未明确要求,通常返回任意一个目标值的索引即可。例如 [1,2,2,3] 中搜索 2,可能返回索引1或2。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值