算法题 两数之和 IV - 输入二叉搜索树

LeetCode 653. 两数之和 IV - 输入二叉搜索树

问题描述

给定一个二叉搜索树(BST)和一个目标整数 k,判断 BST 中是否存在两个不同节点的值之和等于 k

示例

输入: 
    5
   / \
  3   6
 / \   \
2   4   7
k = 9
输出: true (因为 2 + 7 = 9)

算法思路

方法一:哈希表辅助遍历(通用解法)

  1. 遍历 BST:使用任意遍历方式(前序、中序、后序、层序)
  2. 实时检查
    • 对于每个节点值 val,检查 k - val 是否存在于哈希表
    • 若存在则返回 true;否则将 val 加入哈希表
  3. 遍历结束未找到:返回 false

方法二:中序遍历+双指针(利用 BST 特性)

  1. 中序遍历:获得有序数组(BST 中序遍历结果为升序序列)
  2. 双指针查找
    • 左指针 left 指向数组开头
    • 右指针 right 指向数组末尾
    • 计算 nums[left] + nums[right]
      • 等于 k:返回 true
      • 小于 kleft++
      • 大于 kright--

代码实现

方法一:哈希表辅助遍历

class Solution {
    public boolean findTarget(TreeNode root, int k) {
        Set<Integer> seen = new HashSet<>();
        return dfs(root, k, seen);
    }
    
    private boolean dfs(TreeNode node, int k, Set<Integer> seen) {
        if (node == null) return false;
        
        // 检查是否存在互补数
        if (seen.contains(k - node.val)) {
            return true;
        }
        seen.add(node.val); // 记录当前节点值
        
        // 递归遍历左右子树
        return dfs(node.left, k, seen) || dfs(node.right, k, seen);
    }
}

方法二:中序遍历+双指针

class Solution {
    public boolean findTarget(TreeNode root, int k) {
        List<Integer> nums = new ArrayList<>();
        inorder(root, nums); // 中序遍历获取有序数组
        
        // 双指针查找两数之和
        int left = 0, right = nums.size() - 1;
        while (left < right) {
            int sum = nums.get(left) + nums.get(right);
            if (sum == k) {
                return true;
            } else if (sum < k) {
                left++;
            } else {
                right--;
            }
        }
        return false;
    }
    
    // 中序遍历:左-根-右
    private void inorder(TreeNode node, List<Integer> nums) {
        if (node == null) return;
        inorder(node.left, nums);
        nums.add(node.val);
        inorder(node.right, nums);
    }
}

算法分析

  • 时间复杂度
    • 方法一:O(n)(每个节点访问一次)
    • 方法二:O(n)(遍历 + 双指针各 O(n))
  • 空间复杂度
    • 方法一:O(n)(哈希表存储节点值)
    • 方法二:O(n)(存储中序遍历结果)

算法过程

BST(k=9):

树结构:
    5
   / \
  3   6
 / \   \
2   4   7

方法一(哈希表):

  1. 遍历节点 5:哈希表为空 → 存入 5
  2. 遍历节点 3:检查 9-3=6 不在表 → 存入 3
  3. 遍历节点 2:检查 9-2=7 不在表 → 存入 2
  4. 遍历节点 4:检查 9-4=5 存在表中 → 返回 true

方法二(中序遍历+双指针):

  1. 中序遍历结果[2, 3, 4, 5, 6, 7]
  2. 双指针操作
    • left=0(值2), right=5(值7)→ 2+7=9 → 返回 true

测试用例

public static void main(String[] args) {
    Solution solution = new Solution();
    
    // 构建示例BST
    TreeNode root = new TreeNode(5);
    root.left = new TreeNode(3);
    root.right = new TreeNode(6);
    root.left.left = new TreeNode(2);
    root.left.right = new TreeNode(4);
    root.right.right = new TreeNode(7);
    
    // 测试用例1:存在解 (2+7=9)
    System.out.println("Test 1: " + solution.findTarget(root, 9)); // true
    
    // 测试用例2:存在解 (3+6=9)
    System.out.println("Test 2: " + solution.findTarget(root, 9)); // true
    
    // 测试用例3:不存在解
    System.out.println("Test 3: " + solution.findTarget(root, 20)); // false
    
    // 测试用例4:相同节点值但不同节点 (5+4=9)
    System.out.println("Test 4: " + solution.findTarget(root, 9)); // true
    
    // 测试用例5:单节点树
    TreeNode single = new TreeNode(1);
    System.out.println("Test 5: " + solution.findTarget(single, 1)); // false
    
    // 测试用例6:两节点树 (1+2=3)
    TreeNode twoNodes = new TreeNode(1);
    twoNodes.right = new TreeNode(2);
    System.out.println("Test 6: " + solution.findTarget(twoNodes, 3)); // true
}

关键点

  1. 方法一通用性

    • 适用于任意二叉树
    • 实时检查避免完整遍历
  2. 方法二高效性

    • 利用 BST 有序特性
    • 双指针查找效率高
  3. 重复值处理

    • 题目要求两个 不同节点,因此当 k=2*val 时需确保存在两个相同值节点
    • 测试用例4验证此情况

常见问题

1. 方法一是否适用于非 BST?
是,方法一不依赖树的结构特性,适用于所有二叉树。

2. 方法二中为什么用中序遍历?
BST 的中序遍历结果是有序数组,可应用双指针技巧高效查找两数之和。

3. 如何处理 k 等于两倍节点值的情况?
需确保存在两个不同节点的值均为 k/2。哈希表方法会自动处理(先存一个节点,遇到第二个时匹配)。

4. 最坏情况下的空间复杂度?
当树退化为链表时,递归栈深度为 O(n),哈希表/数组空间为 O(n)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值