算法题 托普利茨矩阵

766. 托普利茨矩阵

问题描述

给你一个 m x n 的矩阵 matrix。如果这个矩阵是托普利茨矩阵,返回 true;否则,返回 false

如果矩阵中每一条由左上到右下的对角线上的元素都相同,那么这个矩阵是托普利茨矩阵。

示例

输入: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]
输出: true
解释: 
在上述矩阵中, 其对角线为: 
"[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]"。
各条对角线上的所有元素都相同, 因此答案是 True 。
输入: matrix = [[1,2],[2,2]]
输出: false
解释: 
对角线 "[1, 2]" 上的元素不同。

算法思路

对角线遍历法

  1. 对于矩阵中的每个元素(除了最后一行和最后一列),检查其右下角元素是否相等
  2. 即检查 matrix[i][j] == matrix[i+1][j+1]
  3. 如果所有检查都通过,则是托普利茨矩阵

核心思想:托普利茨矩阵的定义是每条对角线上的元素相同,这等价于每个元素都等于其右下角的元素。

代码实现

方法一:逐元素检查法(推荐解法)

class Solution {
    /**
     * 判断矩阵是否为托普利茨矩阵
     * 
     * @param matrix m x n 的整数矩阵
     * @return 如果是托普利茨矩阵返回true,否则返回false
     */
    public boolean isToeplitzMatrix(int[][] matrix) {
        // 输入校验
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return true; // 空矩阵认为是托普利茨矩阵
        }
        
        int m = matrix.length;      // 行数
        int n = matrix[0].length;   // 列数
        
        // 特殊情况:单行或单列矩阵
        if (m == 1 || n == 1) {
            return true;
        }
        
        // 遍历矩阵中除最后一行和最后一列外的所有元素
        for (int i = 0; i < m - 1; i++) {
            for (int j = 0; j < n - 1; j++) {
                // 检查当前元素是否等于其右下角元素
                if (matrix[i][j] != matrix[i + 1][j + 1]) {
                    return false;
                }
            }
        }
        
        // 所有检查通过,是托普利茨矩阵
        return true;
    }
}

方法二:对角线遍历法

class Solution {
    /**
     * 按对角线遍历的解法
     * 逻辑更贴近问题定义
     * 
     * @param matrix 输入矩阵
     * @return 是否为托普利茨矩阵
     */
    public boolean isToeplitzMatrix(int[][] matrix) {
        if (matrix == null || matrix.length == 0 || matrix[0].length == 0) {
            return true;
        }
        
        int m = matrix.length;
        int n = matrix[0].length;
        
        if (m == 1 || n == 1) {
            return true;
        }
        
        // 从第一行开始,遍历每条对角线
        for (int j = 0; j < n; j++) {
            if (!isValidDiagonal(matrix, 0, j)) {
                return false;
            }
        }
        
        // 从第二行开始(第一行已处理),遍历每条对角线
        for (int i = 1; i < m; i++) {
            if (!isValidDiagonal(matrix, i, 0)) {
                return false;
            }
        }
        
        return true;
    }
    
    /**
     * 检查从 (row, col) 开始的对角线是否所有元素相同
     */
    private boolean isValidDiagonal(int[][] matrix, int row, int col) {
        int m = matrix.length;
        int n = matrix[0].length;
        int value = matrix[row][col];
        
        while (row < m && col < n) {
            if (matrix[row][col] != value) {
                return false;
            }
            row++;
            col++;
        }
        
        return true;
    }
}

算法分析

  • 时间复杂度:O(m × n)

    • 需要遍历矩阵中除边界外的所有元素
    • 每个元素的检查是 O(1)
  • 空间复杂度:O(1)

    • 只使用常数额外空间
  • 算法特点

    • 直接检查相邻关系
    • 一次遍历解决问题
    • 代码简洁高效

算法过程

matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]]

  1. i=0, j=0: matrix[0][0]=1, matrix[1][1]=1
  2. i=0, j=1: matrix[0][1]=2, matrix[1][2]=2
  3. i=0, j=2: matrix[0][2]=3, matrix[1][3]=3
  4. i=1, j=0: matrix[1][0]=5, matrix[2][1]=5
  5. i=1, j=1: matrix[1][1]=1, matrix[2][2]=1
  6. i=1, j=2: matrix[1][2]=2, matrix[2][3]=2
  7. 所有检查通过,返回 true

测试用例

public static void main(String[] args) {
    Solution solution = new Solution();
    
    // 测试用例1:标准托普利茨矩阵
    int[][] matrix1 = {{1,2,3,4},{5,1,2,3},{9,5,1,2}};
    System.out.println("Test 1: " + solution.isToeplitzMatrix(matrix1)); // true
    
    // 测试用例2:非托普利茨矩阵
    int[][] matrix2 = {{1,2},{2,2}};
    System.out.println("Test 2: " + solution.isToeplitzMatrix(matrix2)); // false
    
    // 测试用例3:单行矩阵
    int[][] matrix3 = {{1,2,3,4}};
    System.out.println("Test 3: " + solution.isToeplitzMatrix(matrix3)); // true
    
    // 测试用例4:单列矩阵
    int[][] matrix4 = {{1},{2},{3}};
    System.out.println("Test 4: " + solution.isToeplitzMatrix(matrix4)); // true
    
    // 测试用例5:1x1矩阵
    int[][] matrix5 = {{5}};
    System.out.println("Test 5: " + solution.isToeplitzMatrix(matrix5)); // true
    
    // 测试用例6:空矩阵
    int[][] matrix6 = {};
    System.out.println("Test 6: " + solution.isToeplitzMatrix(matrix6)); // true
    
    // 测试用例7:2x2托普利茨矩阵
    int[][] matrix7 = {{1,2},{3,1}};
    System.out.println("Test 7: " + solution.isToeplitzMatrix(matrix7)); // true
    
    // 测试用例8:3x3非托普利茨矩阵
    int[][] matrix8 = {{1,2,3},{4,5,6},{7,8,9}};
    System.out.println("Test 8: " + solution.isToeplitzMatrix(matrix8)); // false
}

关键点

  1. 对角线特性

    • 每条对角线上的元素满足 matrix[i][j] == matrix[i+1][j+1]
    • 这是托普利茨矩阵的核心性质
  2. 遍历范围

    • 只需遍历 [0, m-2] × [0, n-2] 的子矩阵
    • 边界元素无需检查
  3. 边界处理

    • 空矩阵
    • 单行/单列矩阵
    • 1x1矩阵
  4. 算法效率

    • 无法进一步优化时间复杂度
    • 必须检查所有相关元素

常见问题

  1. 为什么检查右下角就够了?

    • 因为如果每个元素都等于其右下角元素
    • 那么整条对角线上的元素都相等
  2. 如何处理负数?

    • 算法同样适用
    • 数值比较与正负无关
  3. 能否用哈希表?

    • 可以,但过于复杂
    • 不如直接比较高效
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值