
机器学习
文章平均质量分 85
机器学习算法
藓类少女
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【机器学习】强化学习
1. 强化学习的基本概念强化学习问题通常被建模为马尔可夫决策过程(Markov Decision Process, MDP)智能体(Agent):学习的主体,比如机器人、自动驾驶汽车、游戏 AI 等。环境(Environment):智能体所处的世界,它可以是物理环境(现实世界)或虚拟环境(游戏、金融市场等)。状态(State, S):描述环境当前的情况。例如,在自动驾驶中,状态可能包括道路状况、速度、障碍物位置等。动作(Action, A):智能体可以采取的行为。原创 2025-03-19 17:13:21 · 1745 阅读 · 0 评论 -
【机器学习】机器学习四大分类
虽然不是机器学习的“基本类型”,但这些方法在现代 AI 发展中起到了重要作用,属于。,如迁移学习、自监督学习、在线学习、联邦学习等,它们通常被视为机器学习的。随着深度学习的发展,出现了一些新的。机器学习的方法主要可以分为。原创 2025-03-19 14:40:59 · 1203 阅读 · 0 评论 -
joblib、pickle库
joblib是一个 Python 库,主要用于提供高效的序列化工具以及并行计算的能力。它广泛应用于机器学习中,尤其是在模型的保存与加载,以及并行处理等方面。原创 2024-08-15 19:23:01 · 871 阅读 · 0 评论 -
【超参数调优】Optuna
Optuna 允许用户灵活地定义超参数的搜索空间,包括连续型、离散型和条件型超参数。目标函数需要接受一个对象,并返回一个需要最小化(或最大化)的值。# 加载数据集# 定义目标函数# 定义超参数搜索空间param = {# 创建 LightGBM 数据集# 训练模型# 预测y_pred = [list(x).index(max(x)) for x in y_pred] # 获取每行最大值的索引作为预测类别# 计算准确率# 创建研究对象。原创 2024-07-30 18:57:51 · 4871 阅读 · 0 评论 -
【模型】LightGBM
LightGBM 是一种基于决策树算法的梯度提升框架,专为快速高效的模型训练和预测设计。它由微软开发,并且广泛应用于各种机器学习任务,尤其在结构化数据和分类问题上表现出色。原创 2024-07-30 18:29:27 · 1819 阅读 · 0 评论 -
【模型】CatBoost
CatBoost 是一种高效的梯度提升决策树(GBDT)算法,由俄罗斯科技公司 Yandex 开发。它特别擅长处理分类特征和小数据集,在许多机器学习竞赛和实际应用中表现出色。原创 2024-07-30 18:38:07 · 792 阅读 · 0 评论 -
【模型】VotingClassifier
VotingClassifier 是一个用于集成学习的分类器,它结合了多个不同模型的预测结果,以提高整体的预测准确性和稳定性。集成学习的基本思想是通过结合多个弱分类器来创建一个强分类器。VotingClassifier 是 scikit-learn 库中的一个类,支持多种分类模型的集成。原创 2024-07-30 18:41:07 · 1072 阅读 · 0 评论 -
【模型】XGBoost
XGBoost 基于梯度提升框架,它通过逐步构建一系列弱学习器(通常是决策树),每一个新的学习器都试图纠正前一个学习器的错误。: 传统的 GBDT 在生成树时是串行的,而 XGBoost 可以通过并行计算优化树结构的部分操作,从而显著提高训练速度。: XGBoost 的正则化机制和内置的处理缺失值能力,使得它在复杂的、噪声较多的数据集上也能表现良好。: 在预测阶段,XGBoost 使用每棵树的输出通过加权投票来做最终预测,从而提升模型的准确性。增加这个值可以提高模型的复杂度,但也增加了过拟合的风险。原创 2024-08-15 18:53:30 · 1135 阅读 · 0 评论 -
【模型】VotingRegressor
是一个集成学习模型,属于 Scikit-learn 库中提供的集成方法之一。它的主要思想是通过结合多个基于不同算法的回归模型来提高预测性能。这些基础模型各自做出预测,然后会对它们的输出进行加权平均(或直接平均),最终给出一个集成的预测结果。原创 2024-08-16 19:30:52 · 605 阅读 · 0 评论 -
【机器学习算法】梯度提升决策树
梯度提升决策树(Gradient Boosting Decision Trees, GBDT)是一种集成学习方法,它通过结合多个弱学习器(通常是决策树)来构建一个强大的预测模型。GBDT 是目前最流行和最有效的机器学习算法之一,特别适用于回归和分类任务。它在许多实际应用中表现出色,包括金融风险控制、搜索排名、推荐系统等领域。原创 2024-08-15 18:56:51 · 1149 阅读 · 0 评论 -
【机器学习算法】 Q学习
Q学习(Q-Learning)是一种基于值的强化学习算法,用于在给定状态下选择动作,以最大化累积奖励。它通过不断更新一个称为Q表(Q-table)的表来学习动作的价值。原创 2024-06-20 18:23:56 · 2352 阅读 · 0 评论 -
【机器学习】 监督学习和无监督学习
监督学习和无监督学习是机器学习的两种主要方法,它们之间有几个关键区别:监督学习(Supervised Learning):无监督学习(Unsupervised Learning):监督学习:无监督学习:监督学习:无监督学习:监督学习示例:无监督学习示例:监督学习:无监督学习:监督学习:无监督学习:总结起来,监督学习使用带标签的数据进行训练,目标是预测或分类新的数据,而无监督学习使用无标签的数据,目标是发现数据的内在结构或模式。两者在数据需求、训练目标和评估方法上有显著的区别。原创 2024-06-20 17:54:59 · 641 阅读 · 0 评论 -
【机器学习算法】主成分分析
主成分分析(Principal Component Analysis, PCA)是一种用于降维和特征提取的统计方法。它可以将高维数据投影到较低维度的空间中,同时尽量保留数据的变异性。以下是详细的学习步骤,包括理论和实际操作。原创 2024-06-20 17:40:20 · 1167 阅读 · 0 评论 -
【机器学习算法】 K均值聚类
K均值聚类是一种迭代算法,通过将数据分成K个簇来最小化簇内数据点到簇中心的距离。原创 2024-06-20 16:56:03 · 1718 阅读 · 0 评论 -
【机器学习算法】支持向量机
支持向量机(SVM)是一种用于分类和回归分析的监督学习模型。SVM通过找到一个超平面来将数据点分开,从而实现分类。原创 2024-06-20 12:55:52 · 960 阅读 · 0 评论 -
【机器学习算法】决策树
特征选择以增益率为例,在决策树构建过程中,选择每个节点的分裂特征是基于当前数据集的增益率计算结果的。对于每个分裂点,我们都会重新计算剩余特征的增益率,并选择其中最高的作为下一个分裂特征。树的每个节点表示一个特征,节点之间的分支表示特征的可能取值,叶节点表示分类或回归结果。固有值是衡量属性取值多样性的一种指标。通过这种方式,决策树会根据每个节点选择最佳的分裂特征,直到所有数据点都被正确分类或没有更多的特征可供分裂。通过计算每个属性的增益率,选择增益率最高的属性作为决策树节点的划分属性,从而构建最优的决策树。原创 2024-06-19 21:24:08 · 2159 阅读 · 1 评论 -
【机器学习算法】线性回归
Lasso回归:与岭回归类似,但使用的是模型参数的绝对值之和乘以 α。Lasso 回归不仅可以限制系数的大小,还可以将某些不重要的特征的系数缩小甚至置零,从而实现了自动的特征选择。通过实际的案例和练习来加深对线性回归算法的理解。例如,使用公开数据集进行房价预测,可以通过调整模型参数和处理数据来优化模型。3. 处理异常值和多重共线性:清理数据以及使用技术手段处理数据中的异常值和特征之间的相关性。评估线性回归模型的性能是理解其有效性的关键。这些概念构成了理解线性回归模型的基础。原创 2024-06-18 19:16:03 · 964 阅读 · 0 评论