FPN(Feature Pyramid Network)详解

文章涉及个人理解部分,可能有不准确的地方,敬请指正

0. 概述

FPN,全名Feature Pyramid Networks,中文称为特征金字塔网络。它是2017年cvpr上提出的一种网络,主要解决的是目标检测中的多尺度问题。FPN通过简单的网络连接改变,在基本不增加原有模型计算量的情况下,大幅度提升了小物体检测的性能。

1. 产生动机

目标检测领域中,多尺度检测一直是个挑战,特别是小目标。以往(作者成文的时候,不是现在)检测主要分为三类:
在这里插入图片描述
a)使用单特征层。将特征提取网络最后一层输出的特征图,拿去做检测、识别,这是最早期,最一般的方法,该方法的缺点在于,最后一层特征图的尺寸一般都比较小了,无法准确定位目标。
b)多尺度输入。将输入图像resize成多个尺度,然后对每个尺度的图像提取出不同尺度的特征,这种方法计算量很大,因为要进行多次特征提取,即走了好几遍backbone。
c)多尺度特征。在特征提取时,保留中间层的不同尺度上的特征图,对每个尺度的特征图进行预测,这样做是不错的,但是高层特征图只具有丰富的语义信息,而低层特征图只有丰富的位置信息,没有将两者进行结合。

此时,文章作者就想到,如果能对方法 c)中不同尺度的特征图进行融合,岂不美哉,于是FPN就诞生了。

FPN的大致结构长这样:在这里插入图片描述
FPN对高层特征图(尺寸越小越高)进行上采样,然后跟上一层的特征图进行相加融合,这样就使融合后的特征图既包含高层的语义信息,又包含低层的结构信息。而且这样做只增加少量的计算量,是完全可以接受的。

所以简单来说,FPN主要有两个特点

  • 输出多尺度特征图,对不同尺度的目标都有不错的效果;
  • 不同尺度特征图之间进行了融合,使特征图同时具有高层语义信息和低层结构信息。

2. 网络结构详解

在这里插入图片描述
网络结构大致可以分为三个部分讲解,作者还分别给他们起了名

2.1 buttom-up

这一部分就是常见的特征提取网络,比如VGG,ResNet之类的,不过对特征图的输出尺度有要求,相邻的输出特征图尺度是2倍的关系。作者以ResNet为例,以conv2, conv3, conv4, conv5的输出作为输出特征图,假设他们的输出特征图分别是{ C2,C3,C4,C5}\{C2,C3,C4,C5\}{ C2,C3,C

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值