一、RDD 血缘关系
RDD 只支持粗粒度转换,即在大量记录上执行的单个操作。将创建 RDD 的一系列 Lineage(血统)记录下来,以便恢复丢失的分区。RDD 的 Lineage 会记录 RDD 的元数据信息和转换行为,当该 RDD 的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
通过 rdd.toDebugString 方法可以看到 RDD 的血缘关系:
package spark.core.dependent
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
/**
* RDD 血缘关系
*/
object Spark_RDD_Operator_Dependent_Study1 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().
setMaster("local[*]").
set("spark.driver.host", "localhost").
setAppName("rdd")
val sc = new SparkContext(sparkConf)
val fileRDD: RDD[String] = sc.textFile("input/word.txt")
println(fileRDD.toDebugString)
println("----------------------")
val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
println(wordRDD.toDebugString)
println("----------------------")
val mapRDD: RDD[(String, Int)] = wordRDD.map((_,1))
println(mapRDD.toDebugString)
println("----------------------")
val resultRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)
println(resultRDD.toDebugString)
resultRDD.collect()
}
}
运算结果:
(2) input/word.txt MapPartitionsRDD[1] at textFile at Spark_RDD_Operator_Dependent_Study1.scala:17 []
| input/word.txt HadoopRDD[0] at textFile at Spark_RDD_Operator_Dependent_Study1.scala:17 []
----------------------
(2) MapPartitionsRDD[2] at flatMap at Spark_RDD_Operator_Dependent_Study1.scala:21 []
| input/word.txt MapPartitionsRDD[1] at textFile at Spark_RDD_Operator_Dependent_Study1.scala:17 []
| input/word.txt HadoopRDD[0] at textFile at Spark_RDD_Operator_Dependent_Study1.scala:17 []
----------------------
(2) MapPartitionsRDD[3] at map at Spark_RDD_Operator_Dependent_Study1.scala:25 []
| MapPartitionsRDD[2] at flatMap at Spark_RDD_Operator_Dependent_Study1.scala:21 []
| input/word.txt MapPartitionsRDD[1] at textFile at Spark_RDD_Operator_Dependent_Study1.scala:17 []
| input/word.txt HadoopRDD[0] at textFile at Spark_RDD_Operator_Dependent_Study1.scala:17 []
----------------------
(2) ShuffledRDD[4] at reduceByKey at Spark_RDD_Operator_Dependent_Study1.scala:29 []
+-(2) MapPartitionsRDD[3] at map at Spark_RDD_Operator_Dependent_Study1.scala:25 []
| MapPartitionsRDD[2] at flatMap at Spark_RDD_Operator_Dependent_Study1.scala:21 []
| input/word.txt MapPartitionsRDD[1] at textFile at Spark_RDD_Operator_Dependent_Study1.scala:17 []
| input/word.txt HadoopRDD[0] at textFile at Spark_RDD_Operator_Dependent_Study1.scala:17 []
二、RDD 依赖关系
依赖关系,其实就是 RDD 之间的关系。
通过 rdd.dependencies 查看依赖关系:
package spark.core.dependent
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
/**
* RDD 依赖关系
*/
object Spark_RDD_Operator_Dependent_Study2 {
def main(args: Array[String]): Unit = {
val sparkConf = new SparkConf().
setMaster("local[*]").
set("spark.driver.host", "localhost").
setAppName("rdd")
val sc = new SparkContext(sparkConf)
val fileRDD: RDD[String] = sc.textFile("input/word.txt")
println(fileRDD.dependencies)
println("----------------------")
val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
println(wordRDD.dependencies)
println("----------------------")
val mapRDD: RDD[(String, Int)] = wordRDD.map((_,1))
println(mapRDD.dependencies)
println("----------------------")
val resultRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)
println(resultRDD.dependencies)
resultRDD.collect()
}
}
运算结果:
List(org.apache.spark.OneToOneDependency@dab48d3)
----------------------
List(org.apache.spark.OneToOneDependency@1639f93a)
----------------------
List(org.apache.spark.OneToOneDependency@2eaef76d)
----------------------
List(org.apache.spark.ShuffleDependency@2436ea2f)
三、RDD 窄依赖
窄依赖表示每一个父 RDD 的 Partition 最多被子 RDD 的一个 Partition 使用。
class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd)
四、RDD 宽依赖
宽依赖表示同一个父 RDD 的 Partition 被多个子 RDD 的 Partition 依赖,会引起 Shuffle。
class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag](
@transient private val _rdd: RDD[_ <: Product2[K, V]],
val partitioner: Partitioner,
val serializer: Serializer = SparkEnv.get.serializer,
val keyOrdering: Option[Ordering[K]] = None,
val aggregator: Option[Aggregator[K, V, C]] = None,
val mapSideCombine: Boolean = false)
extends Dependency[Product2[K, V]]
五、RDD 阶段划分
DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环。例如,DAG 记录了RDD 的转换过程和任务的阶段。
spark 划分阶段中遇到一个 shuffle 操作就会阶段数加 1。
六、RDD 任务划分
RDD 任务切分中间分为:Application、Job、Stage 和 Task
Application:初始化一个 SparkContext 即生成一个Application
Job:一个 Action 算子就会生成一个 Job
Stage:Stage 等于宽依赖(ShuffleDependency)的个数加 1
Task:一个 Stage 阶段中,最后一个 RDD 的分区个数就是 Task 的个数
注意:Application -> Job -> Stage -> Task每一层都是 1 对 n 的关系。