3、MapReduce框架原理
MapReduce主要分为Map阶段和Reduce阶段,其中还有shuffle部分,主要让数据进入环形缓冲区后进行排序处理。
·InputFormat数据输入
数据的输入处理主要由切片和MapTask并行度决定:数据块:Block 是 HDFS 物理上把数据分成一块一块。数据块是 HDFS 存储数据单位。 数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行 存储。数据切片是 MapReduce 程序计算输入数据的单位,一个切片会对应启动一个 MapTask。
例如:切片大小为100M或切片大小为128M两种情况,而通常一个block块的大小为128M。
注:一个Job的Map阶段并行度由客户端在提交Job时的切片数决定;每一个Split切片分配一个MapTask并行实例处理;默认情况下,切片大小=BlockSize ;切片时不考虑数据集整体,而是逐个针对每一个文件单独切片。
其中,对于job提交流程的源码和切片的源码还没有完全清楚。下面初步介绍
切片源码解析:
(1)程序先找到你数据存储的目录。
(2)开始遍历处理(规划切片)目录下的每一个文件
(3)遍历第一个文件ss.txt
a)获取文件大小fs.sizeOf(ss.txt)
b)计算切片大小 computeSplitSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M
c)默认情况下,切片大小=blocksize
d)开始切,形成第1个切片:ss.txt—0:128M 第2个切片ss.txt—128:256M 第3个切片ss.txt—256M:300M (每次切片时,都要判断切完剩下的部分是否大于块的1.1倍,不大于1.1倍就划分一块切片)
e)将切片信息写到一个切片规划文件中
f)整个切片的核心过程在getSplit()方法中完成
g)InputSplit只记录了切片的元数据信息,比如起始位置、长度以及所在的节点列表等。
4)提交切片规划文件到YARN上,YARN上的MrAppMaster就可以根据切片规划文件计算开启MapTask个数。
文件输入(FileinputFormat)切片机制:简单的按照文件的内容长度进行切片;切片大小=block大小;切片不考虑数据集整体,而是逐个针对每一个文件单独切片
例如:
FileInputFormat 常见的接口实现类包括:TextInputFormat、KeyValueTextInputFormat、 NLineInputFormat、CombineTextInputFormat 和自定义 InputFormat 等。
文本数据输入(TextInputFormat):TextInputFormat 是默认的 FileInputFormat 实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量, LongWritable 类型。值是这行的内容,不包括任何行终止 符(换行符和回车符),Text 类型。
CombinTextInputFormat切片机制:主要应用于小文件过多的场景,可以将多个小文件从逻辑上规划到一个切片中,这样,多个小文件就可以交给一个MapTask处理。
切片机制(虚拟存储和切片):
a、虚拟存储过程:将输入目录下所有文件大小,依次和设置的 setMaxInputSplitSize 值比较,如果不 大于设置的最大值,逻辑上划分一个块。如果输入文件大于设置的最大值且大于两倍, 那么以最大值切割一块;当剩余数据大小超过设置的最大值且不大于最大值 2 倍,此时 将文件均分成 2 个虚拟存储块(防止出现太小切片)。
例如 setMaxInputSplitSize 值为 4M,输入文件大小为 8.02M,则先逻辑上分成一个 4M。剩余的大小为 4.02M,如果按照 4M 逻辑划分,就会出现 0.02M 的小的虚拟存储 文件,所以将剩余的 4.02M 文件切分成(2.01M 和 2.01M)两个文件。
b、切片过程:判断虚拟存储的文件大小是否大于 setMaxInputSplitSize 值,大于等于则单独 形成一个切片。
如果不大于则跟下一个虚拟存储文件进行合并,共同形成一个切片。
测试举例:有 4 个小文件大小分别为 1.7M、5.1M、3.4M 以及 6.8M 这四个小 文件,则虚拟存储之后形成 6 个文件块,大小分别为: 1.7M,(2.55M、2.55M),3.4M 以及(3.4M、3.4M) 最终会形成 3 个切片,大小分别为: (1.7+2.55)M,(2.55+3.4)M,(3.4+3.4)M
·MapReduce工作流程
map阶段: