Yolov模型的使用及数据集准备(1)LabelImg的下载和使用

1、LabelImg下载:

labelimg简单来说就是打标签用的软件,当需要使用自定义数据集进行模型训练时,往往需要使用该软件来打标签。

下载地址:GitHub - HumanSignal/labelImg

 1.1下载之后对压缩包进行解压

2、打开电脑的anaconda prompt

(此命令行窗口是安装了anaconda后才有的)

使用cd指令,跳转到解压文件中,下图所示文件层。

2.1安装相关库

pip install lxml -i https://pypi.tuna.tsinghua.edu.cn/simple/

conda install pyqt=5 

3、依次执行编译指令

 pyrcc5 -o resources.py resources.qrc

 python labelImg.py

之后就会出现工作台啦。

在使用时,注意如果有预设标签,需要进行修改,在labelimg->data->目录下有个文件,可以修改其中的预设标签。

labelimg一张图片中可以设置不止一种标签。

4、可能出现的问题:

在执行python labelImg.py指令时,可能报错:ModuleNotFoundError: No module named 'libs.resources'

解决方案是:

之后重新编译,运行即可。

5、labelimg的操作

备注:标签打上之后是生成xml文件,不是xlsm文件,其中存储着标签信息。

最后,就可使用yolov模型进行目标检测啦!

6、参考文章:

LabelImg的安装出现No module named 'libs.resources'错误-CSDN博客

Windows下深度学习标注工具LabelImg安装和使用指南 - 腾讯云开发者社区-腾讯云 (tencent.com)

7、补充说明

资源下载链接为: https://pan.quark.cn/s/00cceecb854d 在 IT 领域,数据标注是机器学习深度学习项目的关键环节,主要任务是将图像或视频中的目标对象、行为等信息以结构化形式进行标记,帮助算法更好地学习理解。LabelImg 是一款广受欢迎的开源图像标注工具,尤其适用于像素级语义分割物体边界框标注任务。然而,原版 LabelImg 由 AlexeyAB 使用 Python 编写,基于 Qt 图形界面库开发,虽然界面简洁直观,但在处理中文路径标签时存在局限性,这在标注中文语料时会带来不便。而你提到的这个经过特殊修改的版本,完美解决了这一问题,支持中文环境,极大地提升了其在中文图像标注工作中的适用性。 使用这款修改版 LabelImg 的流程如下:首先,需要安装 Python 环境并确保安装了 PIL PyQt5 等必要依赖库。之后,可以通过下载修改后的源码或直接运行编译好的 dist 文件来启动程序。在程序启动后,可以通过菜单操作或拖放方式加载含有中文路径的图像文件。接着,设置好中文标签类别后,利用工具栏上的画笔或矩形工具在图像上绘制标注区域,每个区域可关联一个或多个标签。完成标注后,程序会将标注结果保存为 XML 文件,这种格式被 TensorFlow、PyTorch 等众多深度学习框架所接受,文件中详细记录了图像路径、标注坐标及对应标签等信息。此外,该工具还具备批处理功能,可自动化处理文件夹内所有图片,大幅提升标注效率。在团队协作项目中,支持中文的 LabelImg 还能帮助团队成员共享合并标注结果,避免因编码问题导致的兼容性难题。 这款定制版的 LabelImg 对于中文环境下的图像数据标注具有重要意义,尤其在自动驾驶、智慧城市、农业监测等涉及大量中文信息处理的领域,能够方便地对中文命名的图像进行精确标注,为模型训练提供高质
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值