【神经网络】对torch.nn.functional.normalize()的理解

本文深入探讨了PyTorch中torch.nn.functional.normalize函数的使用方法及原理,通过实例展示了如何在特定维度上计算张量的p范数,并提供了详细的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch.nn.functional.normalize(input, p=2, dim=1, eps=1e-12, out=None)
在这里插入图片描述
本质上就是按照某个维度计算范数,p表示计算p范数(等于2就是2范数),dim计算范数的维度(这里为1,一般就是通道数那个维度)

官方参考
官方api:https://pytorch.org/docs/stable/nn.html#normalize

实例
put_ = torch.Tensor([[1,2]])
a = torch.nn.Softmax()(put_)
b = torch.nn.functional.normalize(a)

打印结果
a:
tensor([[0.2689, 0.7311]])
b:
tensor([[0.3453, 0.9385]])

b中的0.3453其实就是a中的 0.2689/根号下(0.26890.2689+0.73110.7311) = 0.3453

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值