数据结构与算法-根据后序遍历和中序遍历的结果构建二叉树【十】

本文详细解析了如何利用中序遍历和后序遍历构造唯一确定的二叉树,通过递归算法定义树节点,并逐步分解左子树和右子树,最终实现树的构建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里已经确定了思路:

1,根据后序遍历,确认根节点;
2,确认了根节点之后,在中序遍历里面,确认左子树和右子树;

3,根据后续遍历,确认下一个根节点;
4,根据这个跟节点在中序遍历中的位置,确认这个根节点的左子树和右子树;


…重复…

递归定义左子树和右子树

树节点的定义:


 function TreeNode(val, left, right) {
       this.val = (val===undefined ? 0 : val)
       this.left = (left===undefined ? null : left)
       this.right = (right===undefined ? null : right)
   }

递归实现:


var buildTree = function(inorder, postorder) {
  if (!inorder || !postorder || inorder.length !== postorder.length){
	return null
  } 
  // 根据后序遍历去获取根节点,根据中序遍历去确定左子树和右子树
  // 记录中序遍历,各个节点的index, 确定左子树 右子树
  var map = {} 
  for (let i = 0; i < inorder.length; i++) {
    map[inorder[i]] = i
  }
  let idx = postorder.length - 1  // 后序遍历依次取idx--

  var help = (left, right) => {
    if (left > right) return null
    let val = postorder[idx--]
    const rootIndex = map[val]
    const root = new TreeNode(val)
    // key code 
    // 这里必须先求右子树,因为后序遍历,倒序一定是 根右左的顺序来的
    root.right = help(rootIndex + 1, right)
    root.left = help(left, rootIndex - 1)
    return root
  }
  return help(0, postorder.length-1)
};

同理你能写出,中序遍历/前序遍历构造唯一二叉树的代码?

这两个问题对应着leetcode的第106题

### 构造二叉树算法解析 要根据后序遍历序遍历序列构造二叉树,可以利用递归的思想完成。以下是详细的解析: #### 后序遍历的特点 后序遍历的顺序是左子树 -> 右子树 -> 根节点。因此,在后序遍历数组 `postorder` 的最后一个元素总是当前子树的根节点。 #### 中序遍历的特点 中序遍历的顺序是左子树 -> 根节点 -> 右子树。通过找到根节点的位置,我们可以划分出左子树右子树对应的范围。 #### 算法思路 1. 使用后序遍历中的最后一位作为根节点。 2. 在中序遍历中定位该根节点的位置,从而分割出左子树右子树的部分。 3. 对于左子树部分,重复上述过程;对于右子树部分也如此操作。 4. 基于以上逻辑编写递归函数实现。 下面是具体的 C++ 实现代码: ```cpp #include <iostream> #include <unordered_map> #include <vector> using namespace std; // 定义二叉树节点结构 struct TreeNode { int val; TreeNode* left; TreeNode* right; TreeNode() : val(0), left(nullptr), right(nullptr) {} TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} }; class Solution { public: unordered_map<int, int> indexMap; // 存储中序遍历中每个值对应索引位置 TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) { if (inorder.empty()) return nullptr; // 将中序遍历结果存入哈希表以便快速查找 for (int i = 0; i < inorder.size(); ++i) { indexMap[inorder[i]] = i; } return helper(postorder, 0, inorder.size() - 1, 0, postorder.size() - 1); } private: TreeNode* helper(const vector<int>& postorder, int inLeft, int inRight, int postLeft, int postRight) { if (inLeft > inRight || postLeft > postRight) return nullptr; // 当前子树的根节点是从后序遍历得到的最右边的一个数 int rootValue = postorder[postRight]; TreeNode* root = new TreeNode(rootValue); // 获取根节点在中序遍历中的索引 int pIndex = indexMap[rootValue]; // 左子树长度 int leftSize = pIndex - inLeft; // 递归构建左子树右子树 root->left = helper(postorder, inLeft, pIndex - 1, postLeft, postLeft + leftSize - 1); root->right = helper(postorder, pIndex + 1, inRight, postLeft + leftSize, postRight - 1); return root; } }; ``` 此代码实现了基于后序遍历序遍历重建二叉树的功能[^1]。其中使用了一个辅助函数 `helper` 来处理递归调用,并借助哈希表加速了中序遍历中节点位置的查询速度。 --- ### 示例运行 假设输入如下: -序遍历:`inorder = [9, 3, 15, 20, 7]` - 后序遍历:`postorder = [9, 15, 7, 20, 3]` 执行结果会返回一棵二叉树,其结构为: ``` 3 / \ 9 20 / \ 15 7 ``` --- ### 时间复杂度分析 - **时间复杂度**:O(n),其中 n 是节点数量。每次递归都会减少一个问题规模的一部分,而哈希表使得寻找根节点的时间降为 O(1)[^2]。 - **空间复杂度**:O(n),主要由递归栈以及存储中序遍历映射关系的空间决定。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值