The “Hamilton cycle problem” is to find a simple cycle that contains every vertex in a graph. Such a cycle is called a “Hamiltonian cycle”.
In this problem, you are supposed to tell if a given cycle is a Hamiltonian cycle.
Input Specification:
Each input file contains one test case. For each case, the first line contains 2 positive integers N (2<N≤200), the number of vertices, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format Vertex1 Vertex2, where the vertices are numbered from 1 to N. The next line gives a positive integer K which is the number of queries, followed by K lines of queries, each in the format:
n V1 V2 … Vn
where n is the number of vertices in the list, and Vi 's are the vertices on a path.
Output Specification:
For each query, print in a line YES if the path does form a Hamiltonian cycle, or NO if not.
Sample Input:
6 10
6 2
3 4
1 5
2 5
3 1
4 1
1 6
6 3
1 2
4 5
6
7 5 1 4 3 6 2 5
6 5 1 4 3 6 2
9 6 2 1 6 3 4 5 2 6
4 1 2 5 1
7 6 1 3 4 5 2 6
7 6 1 2 5 4 3 1
Sample Output:
YES
NO
NO
NO
YES
NO
题意
给出一个无向图,和若干条路径,判别这些路径是不是哈密顿路径。
思路
- 首先哈密顿路径的顶点数等于无向图的顶点数加1(因为要回到原点)。
- 判断首尾是否是同一个点,否则连圈都不是,更不会是哈密顿圈了。
- 判别路径中的点是否连通(输入有可能给出非法路径)。
- 除了第一个点外所有的顶点出现次数必须等于1(原点在路径中出现两次,排除掉起点后它就只出现一次了)。
通过以上检查即是哈密顿路径。
测试数据好像不完整,少了第二个判别也可以全部通过。
代码
#include <cstdio>
#include <algorithm>
#define MAX_N 201
using namespace std;
int cnt[MAX_N], path[MAX_N]