Python NumPy处理数组的基本用法代码示例

NumPy是一个用于处理数组(向量和矩阵)以及进行数值运算的Python库。下面是一些简单的例子来展示如何使用NumP:

示例1:创建数组

import numpy as np

a = np.array([1, 2, 3])          # 创建一个一维数组
b = np.array([[1, 2, 3], [4, 5, 6]])  # 创建一个二维数组
print(a)
print(b)

示例2:基本操作

import numpy as np

x = np.array([1, 2, 3])
y = np.array([4, 5, 6])

# 数组加法
print(x + y)

# 数组乘法(逐元素相乘)
print(x * y)

# 计算数组的平方根
print(np.sqrt(x))

# 计算数组的指数
print(np.exp(x))

示例3:数组属性

import numpy as np

a = np.array([[1, 2, 3], [4, 5, 6]])

# 获取数组的维度
print(a.ndim)  # 输出: 2

# 获取数组的形状
print(a.shape)  # 输出: (2, 3)

# 获取数组的数据类型
print(a.dtype)  # 输出: int64 (或根据你的系统可能有所不同)

示例4:索引与切片

import numpy as np

a = np.array([[1, 2, 3, 4], [5, 6, 7, 8]])

# 获取第一个元素
print(a[0, 0])  # 输出: 1

# 获取第二行的所有元素
print(a[1, :])  # 输出: [5 6 7 8]

# 获取第一行的第二个和第三个元素
print(a[0, 1:3])  # 输出: [2 3]

示例5:使用NumPy生成随机数

import numpy as np

# 生成一个包含10个随机浮点数的数组
r = np.random.rand(10)
print(r)

# 生成一个包含10个标准正态分布随机数的数组
n = np.random.randn(10)
print(n)

这些只是NumPy的基本用法,你可以根据需要继续深入学习更多高级功能,如广播机制、线性代数运算等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值