hdoj1207-汉诺塔II(多柱汉诺塔问题)

本文详细解析了多柱汉诺塔问题的求解思路,通过动态规划算法找到从A柱将n个盘子移动到C柱的最短路径。代码实现中,使用double类型避免整型溢出,通过迭代计算不同盘子数量下的最优移动步数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

思路

首先这是个多柱汉诺塔问题,对于n阶汉诺塔,具体步骤如下:
1. 首先我们将x个盘子移到B柱,步数为step(x);
2. 然后将n-x个盘子移到C柱,步数为2^(n-x)-1;
3. 最后我们再将B柱上的x个盘子移到C柱,步数为step(x)。
4. 上面的x在1到n之间取值,对于每一个X,我们可以求出一个step(n),然后我们取其中的最小值作为最优解;

code
 1 #include <iostream>
 2 #include <cmath>
 3 #include <cstring>
 4 #include <algorithm>
 5 using namespace std;
 6 double step[65];            //为防止溢出,使用double
 7 int main() {
 8     step[1] = 1;
 9     step[2] = 3;
10     for(int i = 3; i < 65; i ++) {
11         step[i] = 100000;
12         for(int j = 1; j < i; j ++) {
13             step[i] = min(step[i], (double)(2 * step[j] + pow(2, i - j) - 1)); 
14         }
15     }
16     int n;
17     while(cin >> n) {
18         cout << step[n] << endl;
19     }
20     return 0;
21 }

 

转载于:https://www.cnblogs.com/topk/p/6580077.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值