深入浅出之Resnet网络

ResNet(Residual Network,残差网络)是一种由微软亚洲研究院提出的深度神经网络结构,其核心在于通过残差连接(residual connections)解决了深层网络训练中的梯度消失和梯度爆炸问题,使得网络可以训练得更深,性能更强。以下是ResNet网络原理、特点、优缺点及应用场景的详细解析: 

一、ResNet网络原理

ResNet的核心思想是通过残差连接将输入信号直接传递到后面的层,使得网络可以学习到残差而不是全局特征。具体来说,ResNet在每个残差块中引入了一个跨层连接(也称为跳跃连接或shortcut connection),将输入信号直接添加到残差块的输出上。这种设计使得网络在反向传播时能够更容易地传递梯度,从而解决了深层网络训练中的梯度消失问题。

 

1.1 深度学习退化现象

在深度学习中,退化现象主要指的是随着神经网络层数的增加,网络性能反而下降的情况。这种现象与人们的直觉相悖,因为通常认为更深的网络能够学习到更复杂的特征表示,从而提高模型的性能。然而,在实际应用中,过深的网络往往会导致梯度消失、梯度爆炸、过拟合以及低级特征丢失等问

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值