ResNet(Residual Network,残差网络)是一种由微软亚洲研究院提出的深度神经网络结构,其核心在于通过残差连接(residual connections)解决了深层网络训练中的梯度消失和梯度爆炸问题,使得网络可以训练得更深,性能更强。以下是ResNet网络原理、特点、优缺点及应用场景的详细解析:
一、ResNet网络原理
ResNet的核心思想是通过残差连接将输入信号直接传递到后面的层,使得网络可以学习到残差而不是全局特征。具体来说,ResNet在每个残差块中引入了一个跨层连接(也称为跳跃连接或shortcut connection),将输入信号直接添加到残差块的输出上。这种设计使得网络在反向传播时能够更容易地传递梯度,从而解决了深层网络训练中的梯度消失问题。
1.1 深度学习退化现象
在深度学习中,退化现象主要指的是随着神经网络层数的增加,网络性能反而下降的情况。这种现象与人们的直觉相悖,因为通常认为更深的网络能够学习到更复杂的特征表示,从而提高模型的性能。然而,在实际应用中,过深的网络往往会导致梯度消失、梯度爆炸、过拟合以及低级特征丢失等问