YOLOv5损失函数的解析

YOLOv5的损失函数是其目标检测性能的核心支撑,其设计融合了多尺度特征图优化、正负样本动态平衡以及多任务损失加权等关键机制。以下是对其损失函数的详细解析:


一、损失函数构成

YOLOv5的总体损失由定位损失(CIoU Loss)​置信度损失(BCE Loss)​分类损失(BCE Loss)​三部分加权组成,公式可表示为:

其中,权重系数λ1​、λ2​、λ3​分别用于平衡不同任务的优先级,默认配置中置信度损失权重最高(如0.4),定位和分类损失次之(如各0.3)。


二、核心损失函数解析

1. ​定位损失(CIoU Loss)​
  • 作用:衡量预测框与真实框的位置匹配度,仅计算正样本(即存在目标的预测框)。
  • 公式
    • IoU:交并比,衡量重叠程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值