YOLOv5的损失函数是其目标检测性能的核心支撑,其设计融合了多尺度特征图优化、正负样本动态平衡以及多任务损失加权等关键机制。以下是对其损失函数的详细解析:
一、损失函数构成
YOLOv5的总体损失由定位损失(CIoU Loss)、置信度损失(BCE Loss)和分类损失(BCE Loss)三部分加权组成,公式可表示为:
其中,权重系数λ1、λ2、λ3分别用于平衡不同任务的优先级,默认配置中置信度损失权重最高(如0.4),定位和分类损失次之(如各0.3)。
二、核心损失函数解析
1. 定位损失(CIoU Loss)
- 作用:衡量预测框与真实框的位置匹配度,仅计算正样本(即存在目标的预测框)。
- 公式:
- IoU:交并比,衡量重叠程