YoloV3的Pytorch工作总结

本文详细介绍使用PyTorch YOLOv3进行目标检测的部署过程,包括使用libtorch1.0与OpenCV3在Windows和Linux环境下的实践。文章分享了作者在5、6月期间利用libtorch部署YOLOv3并优化小物体检测的经验,对比了其与SSD的实际检测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch代码参考github https://github.com/eriklindernoren/PyTorch-YOLOv3

部署方法使用libtorch1.0+opencv3 不建议使用libtorch1.1

另外libtorch 本人试过cpu版本和cuda9.0的gpu的版本 在windows和linux下均跑通过

linux下的编译文件写法

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(yolo-app)

find_package( OpenCV REQUIRED )
include_directories( ${OpenCV_INCLUDE_DIRS} )

find_package(Torch REQUIRED)

aux_source_directory(. DIR_SRCS)

add_executable(yolo-app cpp/main.cpp )
target_link_libraries(yolo-app "${TORCH_LIBRARIES}" "${OpenCV_LIBS}")
set_property(TARGET yolo-app PROPERTY CXX_STANDARD 11)
#add_compile_options(-g)

 

写好cmakelist后命令行

cmake -DCMAKE_PREFIX_PATH="/home/qdrs/yolo-app/libtorch/share/cmake/Torch" (libtorch的路径) -DCMAKE_BUILD_TYPE="Release"
(opencv路径是根据环境变量自己去找的 版本不要用4.0的 libtorch不支持C++11而opencv支持,另外opencv不支持cuda加速)编译成功

总结 5,6月份主要是用libtorch部署yolov3 并且做了小物体检测 感觉效果不错 但是仍然有漏检 在实际效果下和SSD差距不大

 

 

 

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值