hdu 3037(卢卡斯定理)

本文介绍了一种使用卢卡斯定理解决组合数学中C(N,M)%P问题的方法,并通过一个具体的编程实现展示了如何计算卡特兰数。特别地,文章提供了一个基于C++的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/*
    hdu 3037
    卢卡斯定理
    直接套模板就行
    主要用于求 C(N,M)%P
    其中N与M较大而P小时
    附带提一下卡特兰数
    h(n)=C(2n,n)/(n+1) (n=0,1,2,...)
    或
    h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,...)
    具体怎么来的我也不知道
    但是这题就是卡特兰数的一个例子
*/
#include<iostream>
#include<algorithm>
#include<string.h>
#include<string>
#include<stdio.h>
#include<math.h>
#define ll long long
#define p 1000000007
using namespace std;


ll Pow(ll a,ll n)
{
    ll x = a;
    ll res = 1;
    while(n)
    {
        if(n & 1)
            res=((ll)res*(ll)x)%p;
        n>>= 1;
        x=((ll)x*(ll)x)%p;
    }
    return res;
}


ll Cm(ll n,ll m)
{
    ll a = 1,b = 1;
    if(m > n) return 0;
    while(m)
    {
        a = (a * n) % p;
        b = (b * m) % p;
        m--;
        n--;
    }
    return ((ll)a * (ll)Pow(b,p-2))%p;
}


int Lucas(ll n,ll m)
{
    if(m==0)
        return 1;
    return((ll)Cm(n%p,m%p)*(ll)Lucas(n/p,m/p))%p;
}
void Ex_gcd(long long a, long long b, long long &x, long long &y)
{
    if(b == 0)
    {
        x = 1;
        y = 0;
        return;
    }
    long long x1, y1;
    Ex_gcd(b, a%b, x1, y1);
    x = y1;
    y = x1-(a/b)*y1;
}
int main()
{
    ll n;
    cin>>n;
    n--;
    ll x,y;
    Ex_gcd(1+n,10007,x,y);
    x=((x%p)+p)%p*2%p;
    ll ans=Lucas(2*n,n);
    cout<<(ans*x)%p<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值