/*
hdu 3037
卢卡斯定理
直接套模板就行
主要用于求 C(N,M)%P
其中N与M较大而P小时
附带提一下卡特兰数
h(n)=C(2n,n)/(n+1) (n=0,1,2,...)
或
h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,...)
具体怎么来的我也不知道
但是这题就是卡特兰数的一个例子
*/
#include<iostream>
#include<algorithm>
#include<string.h>
#include<string>
#include<stdio.h>
#include<math.h>
#define ll long long
#define p 1000000007
using namespace std;
ll Pow(ll a,ll n)
{
ll x = a;
ll res = 1;
while(n)
{
if(n & 1)
res=((ll)res*(ll)x)%p;
n>>= 1;
x=((ll)x*(ll)x)%p;
}
return res;
}
ll Cm(ll n,ll m)
{
ll a = 1,b = 1;
if(m > n) return 0;
while(m)
{
a = (a * n) % p;
b = (b * m) % p;
m--;
n--;
}
return ((ll)a * (ll)Pow(b,p-2))%p;
}
int Lucas(ll n,ll m)
{
if(m==0)
return 1;
return((ll)Cm(n%p,m%p)*(ll)Lucas(n/p,m/p))%p;
}
void Ex_gcd(long long a, long long b, long long &x, long long &y)
{
if(b == 0)
{
x = 1;
y = 0;
return;
}
long long x1, y1;
Ex_gcd(b, a%b, x1, y1);
x = y1;
y = x1-(a/b)*y1;
}
int main()
{
ll n;
cin>>n;
n--;
ll x,y;
Ex_gcd(1+n,10007,x,y);
x=((x%p)+p)%p*2%p;
ll ans=Lucas(2*n,n);
cout<<(ans*x)%p<<endl;
return 0;
}
hdu 3037
卢卡斯定理
直接套模板就行
主要用于求 C(N,M)%P
其中N与M较大而P小时
附带提一下卡特兰数
h(n)=C(2n,n)/(n+1) (n=0,1,2,...)
或
h(n)=c(2n,n)-c(2n,n-1)(n=0,1,2,...)
具体怎么来的我也不知道
但是这题就是卡特兰数的一个例子
*/
#include<iostream>
#include<algorithm>
#include<string.h>
#include<string>
#include<stdio.h>
#include<math.h>
#define ll long long
#define p 1000000007
using namespace std;
ll Pow(ll a,ll n)
{
ll x = a;
ll res = 1;
while(n)
{
if(n & 1)
res=((ll)res*(ll)x)%p;
n>>= 1;
x=((ll)x*(ll)x)%p;
}
return res;
}
ll Cm(ll n,ll m)
{
ll a = 1,b = 1;
if(m > n) return 0;
while(m)
{
a = (a * n) % p;
b = (b * m) % p;
m--;
n--;
}
return ((ll)a * (ll)Pow(b,p-2))%p;
}
int Lucas(ll n,ll m)
{
if(m==0)
return 1;
return((ll)Cm(n%p,m%p)*(ll)Lucas(n/p,m/p))%p;
}
void Ex_gcd(long long a, long long b, long long &x, long long &y)
{
if(b == 0)
{
x = 1;
y = 0;
return;
}
long long x1, y1;
Ex_gcd(b, a%b, x1, y1);
x = y1;
y = x1-(a/b)*y1;
}
int main()
{
ll n;
cin>>n;
n--;
ll x,y;
Ex_gcd(1+n,10007,x,y);
x=((x%p)+p)%p*2%p;
ll ans=Lucas(2*n,n);
cout<<(ans*x)%p<<endl;
return 0;
}