【DeepSeek】本地部署,保姆级教程

在这里主要介绍DeepSeek的两种使用方法,一种是调用API使用,一种是本地部署。

目录

一、调用API使用

1.API申请

2.API调用

3.知识库使用

二、本地部署教程

1.快捷部署

2.普通部署


一、调用API使用

1.API申请

我们首先需要申请一个账号,注册后可以直接获取2000万免费tokens,新增我们的秘钥用于后续使用,申请方法如下。

账号登录地址:

硅基流动统一登录

点击秘钥,选择新建秘钥,便可以获得自己的秘钥。记住自己的秘钥,在之后需要使用。

2.API调用

1.进入网址Cherry Studio - 全能的AI助手选择立即下载

2.安装时位置建议放在其他盘,不要放c盘

3.进入软件后,如果你的语言是英文的,可以选择设置,在常规设置这里调整语言。

4.选择设置,选择模型服务,输入你的API秘钥,点击检查即可。

5.向下拉选择管理按钮,在嵌入勾选最后一个(知识库要用到),全部里也可以选择你要用的模型。

6.之后就可以在聊天中进行使用

3.知识库使用

1.添加一个新的知识库

2.在知识库可以上传你的文件

3.在聊天对话页面勾选知识库,便可以根据知识库内容回答问题

二、本地部署教程

1.快捷部署

(1)下载ds大模型安装助手,下载后直接点击快速安装即可。

https://file-cdn-deepseek.fanqiesoft.cn/deepseek/deepseek_28348_st.exe

(2)打开软件,点击立即激活

(3)选择要下载的模型与下载路径,点击立即安装即可

系统会自动进行安装,等待安装完成

(4)安装完成后,即可实现本地化部署

2.普通部署

以上方法简单快捷,不过需要会员功能。以下为免费安装方法。

1.安装LM Studio软件,根据你的电脑系统下载相应安装包LM Studio - Discover, download, and run local LLMs

2.下载后按照流程步骤安装,建议不要安装在c盘,安装后页面如下

3.刚开始为英文,点击右下角设置,语言可以调整为中文

4.点击我的模型,点击搜索按钮,可以在线安装开源模型(需要魔法,下载速度慢)

如果无法从这里安装,也可以先下载好模型,之后导入进行使用。

模型下载地址:魔搭社区

依据你的电脑性能下载模型14B、32B,性能差点选7B

点击模型文件,依据你的电脑性能任选一个下载

新建一个文件夹,比如我在G盘新建个DeepSeek文件夹,文件夹下再新建models文件夹,将我们下载的模型文件放到models文件夹下

将模型目录这里的地址调整为G:DeepSeek文件夹(创建的文件夹地址)

点击聊天,选择刚下载的模型

依据你的电脑性能自行调节,拉的高效果好,但会卡顿

加载模型后便可以本地使用了。

### 本地部署 DeepSeek 大语言模型的完整指南 在本地环境中部署 DeepSeek 大语言模型可以通过 Ollama 框架实现。Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)设计[^3]。以下是具体步骤: #### 1. 硬件与环境准备 根据硬件配置选择合适的模型版本。DeepSeek 提供了多种参数量的模型,包括轻量版(1.5B 参数)和高性能版(7B 参数)。如果设备性能允许,可以选择更大参数量的模型以获得更好的效果[^2]。 - **轻量版(1.5B 参数)**:适合较低配置的设备。 - **高性能版(7B 参数)**:推荐用于性能较高的设备。 #### 2. 安装 Ollama 首先需要安装 Ollama 框架。Ollama 支持多种操作系统,包括 Linux、Mac 和 Windows。以下以 Linux 系统为例说明安装过程: ```bash # 下载并安装 Ollama curl https://ollama.ai/install.sh | sh ``` 验证安装是否成功: ```bash ollama version ``` #### 3. 拉取 DeepSeek 模型 使用 `ollama pull` 命令从远程仓库拉取 DeepSeek 模型。根据硬件选择合适的版本: - 轻量版(1.5B 参数): ```bash ollama pull deepseek-r1:1.5b ``` - 高性能版(7B 参数): ```bash ollama pull deepseek-r1:7b ``` 模型文件默认存储路径为 `/usr/share/ollama/.ollama/models`,可以通过设置环境变量修改存储位置: ```bash export OLLAMA_MODELS="/mnt/ssd/models" ``` #### 4. 启动模型服务 使用 `ollama run` 命令启动模型服务。以下命令将以后台模式运行 DeepSeek 模型: ```bash ollama run deepseek-r1:7b ``` #### 5. 测试对话功能 模型启动后,可以进行简单的测试对话。例如: ```bash >>> 你好,请写一段 Python 排序代码 ``` #### 6. 文件存储路径 默认情况下,模型文件存储在 `/usr/share/ollama/.ollama/models` 目录下。如果需要更改存储路径,可以通过设置环境变量实现: ```bash export OLLAMA_MODELS="/mnt/ssd/models" ``` ### 示例代码 以下是一个简单的 Python 排序代码示例: ```python def quick_sort(arr): if len(arr) <= 1: return arr else: pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) print(quick_sort([3, 6, 8, 10, 1, 2, 1])) ```
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值