第一章命题逻辑
1.1命题符号化及联结词
1.命题:能判断真假的陈述句(这种陈述句的判断只有两种可能:一种是正确的判断,另一种是错误的判断)。
称判断为正确的命题的真值(或值)为真,称判断为错误的命题的真值为假,因而又可以称命题是具有唯一真值的陈述句。
练习1:
哪些是命题?
(1)2是素数。 (2)雪是绿色的。 (3)2+3=5。
(4)明年2月1号是晴天。(5)这朵花好好看! (6)请关上门!
(7)x+y>5。 (8)本命题是假的。
3.简单命题(原子命题):是最简单的陈述句,不能再分解成更简单的句子。
4.复合命题:由简单命题用联结词联结而成的命题。
4.命题符号化:p,q,r...这种小写的英文字母用来表示简单命题
eg: p:2是素数。
q:雪是绿色的。
5.在数理逻辑中,将命题的真值也符号化:一般用1(或T)表示“真”,用0(或F)表示“假”。
6.命题常项(命题常元):以4.为例子,p,q都是命题常项。对于简单命题来说,它的真值是确定的,因而又称命题常项或命题常元。
7.命题变项(命题变元):以练习1的(7)为例子,(7)不是命题,但是一旦给X和y一个确定的值,那么(7)它的真值就确定了。这种真值可以变化的简单陈述句称为命题变项或命题变元。
注意:命题变项不是命题。
练习2:
将下列命题,化成多个简单命题。
方法:1.把逻辑词扔掉(重点)
2.如果拆出来的没有主语,补一个主语就好。
(1)3不是偶数。 (复合命题,不) (2)我喜欢2和3。(简单命题,“和”不是联结词)
(3)如果角A和角B是对顶角,则角A等于角B。(复合命题,如果....则.....)
练习2答案:
(1)简单命题1:3是偶数 。 简单命题2:3不是偶数。
(2)简单命题1: 我喜欢2。 简单命题2:我喜欢3。
(3)简单命题1: 角A和角B是对顶角。(有一个“和”,在拆出时不要把和也拆了,因为对顶角一定要是两个角,否则逻辑上不通,这个我再问问老师)
简单命题2:角A等于角B。
联结词(以真值表为例)
自然语言有这个意思就行。
1.否定联结词:“¬”(值为真,否定完为假。值为假,否定完为真)
自然语言:并非,非,不,否
p:1 ¬p:0 q: 0 ¬q: 1
2.合取联结词: “∧”(只有p和q同时为真时,才为真)
自然语言:既……又…… , 不仅……而且…… , 虽然........但是
p q p∧q
0 0 0
0 1 0
1 0 0
1 1 1
练习3:
将下列命题符号化:
(1)李平既聪明又用功。
(2)李平虽然聪明,但不用功。
(3)李平不但聪明,而且用功。
(4)李平不是不聪明,而是不用功。
练习3答案:(1)p ∧ q (2)p∧ ¬ q (3) p∧ q (4) ¬ (¬p)∧ ¬q
3.析取联结词: “∨”(只有p和q同时为假,才为假)
或具有二义性,一为相容或,二为排斥或。
相容或(∨):王艳学过英语或法语,这里可以符号化。
相斥或(又称异或):唯一的那个王小虎生于1975年或1976年。(那个唯一的王小虎只能是生于其中一年。)
自然语言:或,等等。
p q p∨q
0 0 0
0 1 1
1 0 1
1 1 1
异或联结词(它应该也有自己的符号,∨上面有一横杠,或者一个圆圈里有一个+)
(p和q不同为真,相同为假) :
p q p异或q
0 0 0
0 1 1
1 0 1
1 1 0
4.蕴涵联结词:“→”(前件为假,后面就不用看了,值为真。
剩下的自行判断 ,背也行。)
如果p,则q。
称作p与q的蕴含式,称p为蕴涵式的前件,q为蕴涵式的后件。
自然语言:只要...就....,只有....才...,若...则....
假如:p:土缺水。 q:这颗植物会死
p q p→q
0 0 1
0 1 1
1 0 0
1 1 1
(1)一般我们把前面的句子看作p,而后面的句子看作q。
(2)一般在自然语言中都是p→q。
(3)重点:如果自然语言中有“才”,那么“才”后面的变为前件
5.等价联结词:“↔ ”(p和q相同为真,不相同为假)
p q p↔q
0 0 1
0 1 0
1 0 0
1 1 1
练习1答案:
(1)命题,真值为真
(2)命题,真值为假
(3)命题,真值为真
(4)命题,真值为不确定,但明年就知道了,因为真值唯一
(5)不是命题,因为是感叹句。
(6)不是命题,因为是祈使句,也可以是感叹句,欸,反正就不是陈述句。
(7)不是命题,x和y可以是任意数吧,有时真值为真,有时真值为假。真值不唯一。
(8)不是命题,在我真时我为假,在我假时我为真。矛盾,在此也称悖论。
持续更新。。。。