离散数学第一课

第一章命题逻辑

1.1命题符号化及联结词

1.命题:能判断真假的陈述句(这种陈述句的判断只有两种可能:一种是正确的判断,另一种是错误的判断)

        称判断为正确的命题的真值(或)为真,判断为错误的命题的真假,因而又可以称命题是具有唯一真值的陈述句。

练习1:

哪些是命题?

(1)2是素数。             (2)雪是绿色的。              (3)2+3=5。

(4)明年2月1号是晴天。(5)这朵花好好看!             (6)请关上门!

(7)x+y>5。                    (8)本命题是假的。

3.简单命题(原子命题):是最简单的陈述句,不能再分解成更简单的句子。

4.复合命题:由简单命题联结词联结而成的命题。

4.命题符号化:p,q,r...这种小写的英文字母用来表示简单命题

eg:     p:2是素数。

          q:雪是绿色的。

5.在数理逻辑中,将命题的真值也符号化:一般用1(或T)表示“真”,用0(或F)表示“假”。

6.命题常项(命题常元):以4.为例子,p,q都是命题常项。对于简单命题来说,它的真值是确定的,因而又称命题常项命题常元。

7.命题变项(命题变元):以练习1的(7)为例子,(7)不是命题,但是一旦给X和y一个确定的值,那么(7)它的真值就确定了。这种真值可以变化的简单陈述句称为命题变项命题变元。

注意:命题变项不是命题。

练习2:

将下列命题,化成多个简单命题。

方法:1.把逻辑词扔掉(重点)

           2.如果拆出来的没有主语,补一个主语就好。

(1)3不是偶数。 (复合命题,不)    (2)我喜欢2和3。(简单命题,“和”不是联结词)         

(3)如果角A和角B是对顶角,则角A等于角B。(复合命题,如果....则.....)

练习2答案:

(1)简单命题1:3是偶数 。                            简单命题2:3不是偶数。

(2)简单命题1: 我喜欢2。                            简单命题2:我喜欢3。

(3)简单命题1:  角A和角B是对顶角。(有一个“和”,在拆出时不要把和也拆了,因为对顶角一定要是两个角,否则逻辑上不通,这个我再问问老师)        

 简单命题2:角A等于角B。    

联结词(以真值表为例)

自然语言有这个意思就行。

1.否定联结词:“¬”(值为真,否定完为假。值为假,否定完为真)

自然语言:并非,非,不,否

p:1       ¬p:0      q: 0         ¬q: 1

2.合取联结词: “∧”(只有p和q同时为真时,才为真)

自然语言:既……又……  , 不仅……而且……   ,   虽然........但是

p           q             p∧q

0            0                0 

0            1                0

1            0                0

1            1                1

练习3:

将下列命题符号化:

(1)李平既聪明又用功。

(2)李平虽然聪明,但不用功。

(3)李平不但聪明,而且用功。

(4)李平不是不聪明,而是不用功。

练习3答案:(1)p  q      (2)p∧ ¬ q     (3) p q    (4) ¬ (¬p)∧ ¬q

3.析取联结词: “∨”(只有p和q同时为假,才为假)

或具有二义性,一为相容或,二为排斥或。

相容或:王艳学过英语或法语,这里可以符号化。

相斥或(又称异或):唯一的那个王小虎生于1975年或1976年。(那个唯一的王小虎只能是生于其中一年。)

自然语言:或,等等。

p           q             pq                         

0            0                0 

0            1                1

1            0                1

1            1                1

异或联结词(它应该也有自己的符号,上面有一横杠,或者一个圆圈里有一个+)

(p和q不同为真,相同为假)   

p           q             p异或q                 

0            0                0

0            1                1

1            0                1

1            1                0

4.蕴涵联结词:“→”(前件为假,后面就不用看了,值为真。

   剩下的自行判断 ,背也行。)

如果p,则q。

称作p与q的蕴含式,称p为蕴涵式的前件,q为蕴涵式的后件。

自然语言:只要...就....,只有....才...,若...则....

假如:p:土缺水。        q:这颗植物会死

p           q             pq

0            0                1

0            1                1

1            0                0

1            1                1

(1)一般我们把前面的句子看作p,而后面的句子看作q。

(2)一般在自然语言中都是pq。

(3)重点:如果自然语言中有“才”,那么“才”后面的变为前件

5.等价联结词:“↔ ”(p和q相同为真,不相同为假)

p           q             pq

0            0                1

0            1                0

1            0                0

1            1                1

练习1答案:

(1)命题,真值为真

(2)命题,真值为假

(3)命题,真值为真

(4)命题,真值为不确定,但明年就知道了,因为真值唯一

(5)不是命题,因为是感叹句。

(6)不是命题,因为是祈使句,也可以是感叹句,欸,反正就不是陈述句。

(7)不是命题,x和y可以是任意数吧,有时真值为真,有时真值为假。真值不唯一。

  (8)不是命题,在我真时我为假,在我假时我为真。矛盾,在此也称悖论。

持续更新。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值