关于国人项目Douyu的初步分析

本文深入分析了Douyu平台的技术架构,包括其独特的java文件处理方式、动态特性及自定义资源加载器(ResourceLoader)的工作原理。揭示了Douyu如何通过CleverCoder类实现在不编译的情况下直接执行Java文件,并探讨了其在http请求处理、数据库操作和安全性验证等方面的功能与局限。
               

 中午吃饭时大略分析了一下Douyu的业务实现过程,趁着没人偶赶紧发上来……由于该平台尚未开源,分析可能存在某种程度的误差,对与不对有赖读者自辨……


咳,经过一段相当漫长的钻研,偶得出如下结论:

 

就目前所见,Douyu项目由com.douyu.config,com.douyu.engine,com.douyu.engine.core,com.douyu.engine.db,com.douyu.engine.dialect,com.douyu.engine.http,com.douyu.engine.http.buf,com.douyu.engine.http.fileupload,com.douyu.engine.http.session,com.douyu.engine.http.util,com.douyu.engine.log,com.douyu.engine.util,com.douyu.http(不理解为什么不同com.douyu.engine.http写一起……),com.douyu.main,com.douyu.security,com.douyu.sql,com.douyu.tree,com.douyu.util等包组成。

由于重写了javac的部分java编码,Douyu可以“表面上”直接读取Java文件,也就是Douyu可以不需手动编译即可令Java文件被执行,也可以动态增删java文件内容,但与常见的java字节码修改不同,Douyu的动态特性依赖于添加相应字符串到java文件对应内容后的重新编译。

在Douyu的engine.core包下有两个非常重要的组件,堪称是Douyu的核心所在,一个是调用com.sun.tools.javac包的javac类,一个是真正用于处理Douyu中javac命令的CleverCoder类(在com.sun.tools.javac.main.JavaCompiler与com.sun.tools.javac.comp.Enter中被调用),应该说,javac只是一个调用数据的马甲,而核心在于CleverCoder。至于CleverCoder对于java文件的处理原理,则与jsp生成servlet的原理相类似(顺便说一下,前天偶提到Douyu只能加载静态页面,现在看来并不确切,应该是Douyu可以将view层转义为Java文件,再编译执行转义后的文件并反馈到页面中去,由于Douyu中存在ViewEntry,view数据也会经由updateView函数进行逐行分析后处理并反馈,其与jsp转servlet过程大同小异,但对其运行效率保留意见……)。

Douyu加载java文件与类使用自定义的ResourceLoader,其继承关系如下:URLClassLoader->LibClassLoader->ResourceLoader。

ResourceLoader内部依赖Javac,以ConcurrentHashMap缓存数据,Douyu在每次loadResource时都会判断目标对象是否存在,存在则调用已有对象,不存在则调用异化后的javac生成该对象。纵观整个Douyu平台对ResourceLoader的调用,显而易见Douyu中ResourceLoader重点不是用于加载class。与标准ClassLoader相比,ResourceLoader更像一个javac命令的缓存与执行器,它之所以存在,实际上就是要加载java文件本身,类加载功能反倒其次。

目前来说,ResourceLoader处理不同功能的函数接口并不统一,针对不同功能需要分别调用对应函数,例如在其DefaultContext中out时尚需要分别调用loadClassResource与loadStaticResource,而在Database的MetaData类中又需要调用compileClass(内部会调用findClassOrClassResource查询指定类,有类加载,没有则调用javac编译java文件后加载),到了http包下属的Connector里又得加载loadResource来匹配类与PrintWriter中数据。

Douyu目前涵盖有http请求与反馈、db操作、security验证等主要功能,但实现程度普遍较低。比如数据库方言仅支持mysql、oracle、sqlserver三种,而且只有mysql与oracle实现了不同的limit与非常少的操作优化,sqlserver部分暂时看还是空壳。security中的rule还只有一个接口,没有看到具体业务逻辑与调用,能够被checkPermission函数处理的Permission实现也非常有限。http协议部分虽然拥了有最基础的协议解读能力,但也仅仅是最基础的能力而已,比如目前我即不能向Douyu服务器要求对目标资源进行gzip压缩,Douyu也不可能根据浏览器判定此要求是否可行,更不要说反馈数据了,诸如此类的不足还有很多(仅以偶07年在各大小说网站刷票得到的http协议应用经验看),建议作者去找一份http1.1协议文档逐一比对并分别实现。没办法,谁让Douyu是个孤立的平台,开发难度自然大些(不过都写上的话,性能又会大打折扣,照目前的业务逻辑完全补足协议与相关功能后,我断言Douyu效率比不上Tomcat6,所以系统尚待优化)……

综上所述,窃以为Douyu平台在技术上存在可行性与创新性(如果作者有闲钱的话,可以考虑在国内申请个技术新型专利,最起码摆着好看),只是业务功能暂时不足,部分领域有待分工与优化,尚不具备很强的实用性,希望作者响应国父“革命尚未成功,同志仍需努力”号召,持续发展,与时俱进,吾辈就以观后效了……

以下拣选了两张分析代码时生成的Douyu关系图(感觉比较散啊,侵入性太强了……):

 

01

 

00

           

再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow

标题SpringBoot智能在线预约挂号系统研究AI更换标题第1章引言介绍智能在线预约挂号系统的研究背景、意义、国内外研究现状及论文创新点。1.1研究背景与意义阐述智能在线预约挂号系统对提升医疗服务效率的重要性。1.2国内外研究现状分析国内外智能在线预约挂号系统的研究与应用情况。1.3研究方法及创新点概述本文采用的技术路线、研究方法及主要创新点。第2章相关理论总结智能在线预约挂号系统相关理论,包括系统架构、开发技术等。2.1系统架构设计理论介绍系统架构设计的基本原则和常用方法。2.2SpringBoot开发框架理论阐述SpringBoot框架的特点、优势及其在系统开发中的应用。2.3数据库设计与管理理论介绍数据库设计原则、数据模型及数据库管理系统。2.4网络安全与数据保护理论讨论网络安全威胁、数据保护技术及其在系统中的应用。第3章SpringBoot智能在线预约挂号系统设计详细介绍系统的设计方案,包括功能模块划分、数据库设计等。3.1系统功能模块设计划分系统功能模块,如用户管理、挂号管理、医生排班等。3.2数据库设计与实现设计数据库表结构,确定字段类型、主键及外键关系。3.3用户界面设计设计用户友好的界面,提升用户体验。3.4系统安全设计阐述系统安全策略,包括用户认证、数据加密等。第4章系统实现与测试介绍系统的实现过程,包括编码、测试及优化等。4.1系统编码实现采用SpringBoot框架进行系统编码实现。4.2系统测试方法介绍系统测试的方法、步骤及测试用例设计。4.3系统性能测试与分析对系统进行性能测试,分析测试结果并提出优化建议。4.4系统优化与改进根据测试结果对系统进行优化和改进,提升系统性能。第5章研究结果呈现系统实现后的效果,包括功能实现、性能提升等。5.1系统功能实现效果展示系统各功能模块的实现效果,如挂号成功界面等。5.2系统性能提升效果对比优化前后的系统性能
在金融行业中,对信用风险的判断是核心环节之一,其结果对机构的信贷政策和风险控制策略有直接影响。本文将围绕如何借助机器学习方法,尤其是Sklearn工具包,建立用于判断信用状况的预测系统。文中将涵盖逻辑回归、支持向量机等常见方法,并通过实际操作流程进行说明。 一、机器学习基本概念 机器学习属于人工智能的子领域,其基本理念是通过数据自动学习规律,而非依赖人工设定规则。在信贷分析中,该技术可用于挖掘历史数据中的潜在规律,进而对未来的信用表现进行预测。 二、Sklearn工具包概述 Sklearn(Scikit-learn)是Python语言中广泛使用的机器学习模块,提供多种数据处理和建模功能。它简化了数据清洗、特征提取、模型构建、验证与优化等流程,是数据科学项目中的常用工具。 三、逻辑回归模型 逻辑回归是一种常用于分类任务的线性模型,特别适用于二类问题。在信用评估中,该模型可用于判断借款人是否可能违约。其通过逻辑函数将输出映射为0到1之间的概率值,从而表示违约的可能性。 四、支持向量机模型 支持向量机是一种用于监督学习的算法,适用于数据维度高、样本量小的情况。在信用分析中,该方法能够通过寻找最佳分割面,区分违约与非违约客户。通过选用不同核函数,可应对复杂的非线性关系,提升预测精度。 五、数据预处理步骤 在建模前,需对原始数据进行清理与转换,包括处理缺失值、识别异常点、标准化数值、筛选有效特征等。对于信用评分,常见的输入变量包括收入水平、负债比例、信用历史记录、职业稳定性等。预处理有助于减少噪声干扰,增强模型的适应性。 六、模型构建与验证 借助Sklearn,可以将数据集划分为训练集和测试集,并通过交叉验证调整参数以提升模型性能。常用评估指标包括准确率、召回率、F1值以及AUC-ROC曲线。在处理不平衡数据时,更应关注模型的召回率与特异性。 七、集成学习方法 为提升模型预测能力,可采用集成策略,如结合多个模型的预测结果。这有助于降低单一模型的偏差与方差,增强整体预测的稳定性与准确性。 综上,基于机器学习的信用评估系统可通过Sklearn中的多种算法,结合合理的数据处理与模型优化,实现对借款人信用状况的精准判断。在实际应用中,需持续调整模型以适应市场变化,保障预测结果的长期有效性。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值