机器学习:SVM(非线性数据分类:SVM中使用多项式特征和核函数SVC)

本文介绍了SVM如何处理非线性数据分类,通过两种方法:一是利用多项式特征扩充数据,二是直接使用SVC的核函数。详细展示了如何使用Python的scikit-learn库生成数据、绘制决策边界,并通过调整多项式参数影响模型的决策边界。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基础理解

  • 数据:线性数据、非线性数据;
  • 线性数据:线性相关、非线性相关;(非线性相关的数据不一定是非线性数据)
 1)SVM 解决非线性数据分类的方法
  • 方法一:
  • 多项式思维:扩充原本的数据,制造新的多项式特征;(对每一个样本添加多项式特征)
  • 步骤
  1. PolynomialFeatures(degree = degree):扩充原始数据,生成多项式特征;
  2. StandardScaler():标准化处理扩充后的数据;
  3. LinearSVC(C = C):使用 SVM 算法训练模型;

 

  • 方法二:
  • 使用scikit-learn 中封装好的核函数: SVC(kernel='poly', degree=degree, C=C)
  • 功能:当 SVC() 的参数 kernel = ‘poly’ 时,直接使用多项式特征处理数据;
  • :使用 SVC() 前,也需要对数据进行标准化处理

 

 

二、例

 1)生成数据
  • datasets.make_ + 后缀:自动生成数据集;
  • 如果想修改生成的数据量,可在make_moons()中填入参数;
    import numpy as np
    import matplotlib.pyplot as plt
    from
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值