『NLP学习笔记』图解Word2vec(The Illustrated Word2vec)

本文详细介绍了Word2vec的原理和训练过程,包括词嵌入、Skip-gram模型、负例采样等关键概念。通过可视化的方式,展示了如何用向量表示单词,以及如何通过计算向量间的相似度来理解和分析词汇关系。Word2vec不仅用于自然语言处理,其思想也被应用于其他领域,如推荐系统。文章还探讨了词嵌入的局限性,为后续的预训练技术发展奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值