RAG应用的12种调优策略指南 文章目录 一. 概要 二. 数据索引 2.1. 数据清洗 2.2. 分块 2.3. 嵌入模型 2.4. 元数据(或未向量化的数据) 2.5. 多索引 2.6. 索引算法 三. 推理阶段(检索和生成) 3.1. 检索参数 3.2. 高级检索策略 3.3. 重新排序模型 3.5. 大语言模型(LLM) 3.6. 提示工程 四. 总结 五. 参考文献 一. 概要 本文从数据科学家的角度审视了一种 检索增强生成(Retrieval-Augmented Generation,以下简称RAG),讨论了一些潜在的“超参数”——您可以通过调整它提高RAG流程的性能。类似于深度学习中的实验,数据增强技术不是超参数,而是您可以调整和实验的旋钮,本文还将涵盖您可以应用的不同策略,这些策略并非严格意义上的超参数。 这篇文章按其相关阶段列举了以下RAG流程的“超参数”。在 数据索引 阶段,您可以通过以下方式实现性能提升: 数据清洗 分块 嵌入模型