混合专家模型(Mixed Expert Models,MoE) 文章目录 1. 什么是混合专家模型? 2. MoE的PyTorch示例代码 2.1. 代码图示 2.1. 理解torch.std 2.1.1. 参数介绍 2.1.1. 基本例子 2.1.1. 矩阵的例子 2.1.1. 用作损失的一部分 3. MoE优缺点 4. 参考文章 混合专家模型(Mixed Expert Models,MoE) 1. 什么是混合专家模型? 模型规模是提升模型性能的关键因素之一。在有限的计算资源预算下,用更少的训练步数训练一个更大的模型,往往比用更多的步数训练一个较小的模型效果更佳。 混合专家模型 (MoE) 的一个显著优势是它们能够在 远少于稠密模型所需的计算资源下进行有效的预训练。这意味着在相同的计算预算条件下,您可以显著扩大模型或数据集的规模。特别是在预训练阶段,与稠密模型相比,混