『大模型笔记』为什么我们需要基于大语言模型(LLMs)的流式应用?

『大模型笔记』为什么我们需要基于大语言模型(LLMs)的流式应用?

  • 大语言模型(LLM)和其他机器学习模型有一个很大的不同点:它们在返回完整答案时需要较长的时间,通常会花费几秒钟甚至更久。那么我们该怎么办?难道只能在屏幕前看着“加载中”的转圈图发呆吗?现在人们连等亚马逊 Prime 几小时送货都嫌慢,更别提让他们等一个 LLM 给出答案了。为了解决这个问题,一个非常有效的办法是:在模型生成回答的同时就将其__实时传输出来,也就是所谓的“流式输出”。接下来我会一步步教你怎么实现它。
  • 如果你正在部署一个用于生成文本的大语言模型,那么构建一个支持_流式功能的应用程序可能是个不错的选择。比如说,你用过 ChatGPT 或 Claude 这类应用时会发现,它们的回答是一个字一个字、一个词一个词地出现在屏幕上的,这就是“流式传输”在起作用。为什么这么做?因为解码完整的内容通常非常耗时,如果等生成完整结果后再一次性发送给
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI大模型前沿研究

感谢您的打赏,我会继续努力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值