Windows打不开TensorBoard的http://localhost:6006/网址解决方法之一

创建日志存放目录

from datetime import  datetime

now = datetime.utcnow().strftime('%Y%m%d%H%M%S')
root_logdir = 'tf_logs'
logdir = '{}/ch03/run-{}'.format(root_logdir, now)

构建计算图

x = tf.placeholder(tf.float32, name='x')
y = tf.placeholder(tf.float32, name='y')
w1 = tf.Variable(tf.random_normal([1]), name='w1')
w0 = tf.Variable(tf.zeros([1]), name='w0')
y_hat = w0 + w1 * x
loss = tf.reduce_mean(tf.square(y_hat - y))
optimizer = tf.train.GradientDescentOptimizer(0.01)    # 学习率设为 0.01
train = optimizer.minimize(loss)

设置 TensorBoard

# 给损失模型的输出添加scalar,用来观察loss的收敛曲线
loss_summary = tf.summary.scalar('loss', loss)
# 模型运行产生的所有数据保存到文件夹供 TensorBoard 使用
file_writer = tf.summary.FileWriter(logdir, tf.get_default_graph())

会话 Session

init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)

num_iter = 500
for i in range(num_iter):
    # 训练时传入loss_summary
    summary, _ = sess.run([loss_summary, train], {x: x_train, y: y_train})
    # 收集每次训练产生的数据
    file_writer.add_summary(summary, i)
    if (i+1) % 20 == 0:
        print('Iteration[{}/{}], loss: {:.6f}'.format(i+1,num_iter,sess.run(loss,{x:x_train,y:y_train})))

运行上述代码产生了一个日志文件:
在这里插入图片描述
想利用TensorBoard打开图像,先用cd转移到当前程序所在目录,然后输入

tensorboard --logdir tf_logs/

得到
在这里插入图片描述使用CTRL+C复制网址,在浏览器打开网页http://localhost:6006/失败,尝试后发现CTRL+C会导致程序停止运行,故直接输入网址,即可成功进入。
在这里插入图片描述

Namespace(adam=False, batch_size=32, bucket='', cache_images=False, cfg='models/yolov5s.yaml', data='data/widerface.yaml', device='', epochs=250, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[800, 800], local_rank=-1, log_artifacts=False, log_imgs=16, multi_scale=False, name='exp', noautoanchor=False, nosave=False, notest=False, project='runs/train', rect=False, resume=False, save_dir='runs/train/exp18', single_cls=False, sync_bn=False, total_batch_size=32, weights='weights/yolov5s.pt', workers=4, world_size=1) Start Tensorboard with "tensorboard --logdir runs/train", view at http://localhost:6006/ Hyperparameters {'lr0': 0.01, 'lrf': 0.2, 'momentum': 0.937, 'weight_decay': 0.0005, 'warmup_epochs': 3.0, 'warmup_momentum': 0.8, 'warmup_bias_lr': 0.1, 'box': 0.05, 'cls': 0.5, 'landmark': 0.005, 'cls_pw': 1.0, 'obj': 1.0, 'obj_pw': 1.0, 'iou_t': 0.2, 'anchor_t': 4.0, 'fl_gamma': 0.0, 'hsv_h': 0.015, 'hsv_s': 0.7, 'hsv_v': 0.4, 'degrees': 0.0, 'translate': 0.1, 'scale': 0.5, 'shear': 0.5, 'perspective': 0.0, 'flipud': 0.0, 'fliplr': 0.5, 'mosaic': 0.5, 'mixup': 0.0} WARNING: Dataset not found, nonexistent paths: ['/autodl-tmp/yolov5-face-master/data/widerfaceyolo/val'] Traceback (most recent call last): File "train.py", line 512, in <module> train(hyp, opt, device, tb_writer, wandb) File "train.py", line 71, in train check_dataset(data_dict) # check File "/root/autodl-tmp/yolov5-face-master/utils/general.py", line 124, in check_dataset raise Exception('Dataset not found.') Exception: Dataset not found. root@autodl-container-cf64408ce5-a033bfdb:~/autodl-tmp/yolov5-face-master#
04-23
(material) PS D:\yolo_picture\yolo\yolov5-5.0> python .\train.py github: skipping check (not a git repository) YOLOv5 2021-4-12 torch 1.10.2+cpu CPU Namespace(adam=False, artifact_alias='latest', batch_size=2, bbox_interval=-1, bucket='', cache_images=False, cfg='models/yolov5s_train.yaml', data='data/material.yaml', device='', entity=None, epochs=5, evolve=False, exist_ok=False, global_rank=-1, hyp='data/hyp.scratch.yaml', image_weights=False, img_size=[640, 640], label_smoothing=0.0, linear_lr=False, local_rank=-1, multi_scale=False, name='exp', noautoanchor=False, nosave=False, notest=False, project='runs/train', quad=False, rect=False, resume=False, save_dir='runs\\train\\exp', save_period=-1, single_cls=False, sync_bn=False, total_batch_size=2, upload_dataset=False, weights='yolov5s.pt', workers=8, world_size=1) tensorboard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ hyperparameters: lr0=0.01, lrf=0.2, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0 Traceback (most recent call last): File ".\train.py", line 546, in <module> train(hyp, opt, device, tb_writer) File ".\train.py", line 73, in train weights) else None File "C:\Users\泽熙\.conda\envs\material\lib\site-packages\torch\serialization.py", line 607, in load return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args) File "C:\Users\泽熙\.conda\envs\material\lib\site-packages\torch\serialization.py", line 880, in _load unpickler = UnpicklerWrapper(data_file, **pickle_load_args) TypeError: 'weights_only' is an invalid keyword argument for this function (material) PS D:\yolo_picture\yolo\yolov5-5.0> python -c "from pycocotools.coco import COCO; print('py
03-14
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有道是所谓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值