SVM系列第七讲--KKT条件

上一讲我们介绍了最优化问题的两种形式,无约束的和等式约束条件下的,这一讲,我们主要介绍不等式约束条件下的最优化问题,并介绍一下我们的KKT条件。

1、不等式约束条件

设目标函数f(x),不等式约束为g(x),有的教程还会添加上等式约束条件h(x)。此时的约束优化问题描述如下:

不等式约束问题

则我们定义不等式约束下的拉格朗日函数L,则L表达式为:

屏幕快照 2017-07-20 下午10.46.37.png

求解上面的问题,我们同样可以使用等式约束条件的求解思路,对所有的参数进行求导,但是对于求解出的最优解,必须满足KKT条件(Karush-Kuhn-Tucker ):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值