毕业太难了,感觉导师给定的方向就是network embedding,node embedding了。network embedding大概分为两方面(根据我的需求),一个是对网络中的node进行低维向量表示,一个是针对子图进行向量化表示。
Node embedding
node embedding的方法(就我阅读的论文来看)主要分为:传统的降维方法(矩阵分解,Isomap等)。基于随机游走和word2vec的方法。基于自编码器降维的方法。主要介绍后两种。
所读到的几篇论文,还有一些博客,大概就记录一下:
论文:
Compact Integration of Multi-Network Topology for Functional Analysis of Genes(不是基于word2vec的思想)
node2vec Scalable Feature Learning for Net