network embedding

毕业太难了,感觉导师给定的方向就是network embedding,node embedding了。network embedding大概分为两方面(根据我的需求),一个是对网络中的node进行低维向量表示,一个是针对子图进行向量化表示。
Node embedding

node embedding的方法(就我阅读的论文来看)主要分为:传统的降维方法(矩阵分解,Isomap等)。基于随机游走和word2vec的方法。基于自编码器降维的方法。主要介绍后两种。
所读到的几篇论文,还有一些博客,大概就记录一下:

论文:
Compact Integration of Multi-Network Topology for Functional Analysis of Genes(不是基于word2vec的思想)
node2vec Scalable Feature Learning for Net
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值