
python算法
文章平均质量分 90
算法思路
高山莫衣
律己如高山般崇高品德,无需华丽衣服装饰。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
自编码器-变分自编码器-python案例
自编码器通过将数据压缩成低维表示并重建原始数据来实现降维和去噪声等任务,而变分自编码器则使用潜在空间中的高斯分布进行更加精细的压缩和解压缩,并可以生成新的样本。变分自编码器是一种基于概率的自编码器,它使用潜在空间中的高斯分布来实现更加精细的压缩和解压缩。与普通的自编码器不同,它不仅学习如何对数据进行编码和解码,还会学习如何生成新的样本。生成新样本时,需要先从高斯分布中采样一个潜在变量,再通过解码器将其映射回数据空间中进行图像生成,但生成的结果有时会存在一些不连续的情况,需要注意调整采样和解码器的参数。原创 2023-03-30 09:44:16 · 1184 阅读 · 3 评论 -
PyTorch中的9种常见梯度下降算法与案例
Adam是一种融合了动量梯度下降和自适应学习率的优化算法,在更新参数时既考虑历史梯度的加权平均又考虑历史梯度平方的加权平均。小批量梯度下降是介于批量梯度下降和随机梯度下降之间的梯度下降算法,即每次更新时选取一定数量的样本进行梯度计算和参数更新。RMSprop是一种自适应学习率的优化算法,在更新参数时根据历史梯度平方的加权平均来动态调整每个参数的学习率。批量梯度下降是最基础的梯度下降算法,通过使用全部训练数据计算损失函数的梯度来更新参数。在PyTorch中,可以通过定义损失函数和优化器来实现批量梯度下降。原创 2023-03-27 13:34:29 · 2031 阅读 · 0 评论 -
去中心化联邦学习-Python实现的2个案例
随着人工智能技术的发展,越来越多的数据被收集和使用。然而,这些数据通常分散在不同的设备上,例如移动设备、传感器等。联邦学习(Federated Learning)是一种解决这个问题的方法,它允许在不将数据传输到中央服务器的情况下进行模型训练。但是,联邦学习也存在一些问题,例如数据隐私保护、通信效率等,并且有些应用场景需要更高的安全性和去中心化的特性。因此,出现了去中心化的联邦学习(Decentralized Federated Learning)。原创 2023-03-23 09:04:08 · 2530 阅读 · 8 评论 -
小梯度抽样(low-gradient sampling)思想和python案例
其核心思想是在寻找最优解的过程中,不仅考虑当前位置的梯度信息,还考虑之前位置的梯度信息。然后,我们使用小梯度抽样的方法计算出当前位置的低梯度(即考虑之前位置的梯度信息)。最后,我们根据当前位置的低梯度和学习率来更新当前位置,并将当前梯度信息保存下来,以备下一次迭代使用。通过使用前一次迭代的梯度信息和当前梯度信息的加权平均值,我们可以更好地控制梯度信息的变化,从而避免算法陷入局部最优解。这份代码的实现是基于机器学习中的优化算法,其中小梯度抽样是其中一种常见的技术之一。原创 2023-03-23 02:02:43 · 346 阅读 · 0 评论 -
Python算法学习[1]—算法简介&数据结构
本文简单介绍了算法的含义以及数据结构的三种类型,并用代码进行演示。算法是一系列解决问题的清晰指示,数据结构的作用是保存项目中的数据信息。原创 2021-04-16 18:43:22 · 1888 阅读 · 11 评论 -
Python算法学习[2]—算法思想&实践演练
算法思想有很多,例如枚举、递归、分治、贪心、试探法、动态迭代和模拟等。本文将详细讲解常用的算法思想的基本知识以及实践演练,从而理解并掌握这些算法思想的基本用法和核心知识。原创 2021-04-18 23:46:25 · 615 阅读 · 0 评论