算法小题(五):选举镇长

选举镇长:反向朋友圈问题

来源:18年QiHu360秋招笔试题

原题目为:

        某公司员工 Alex 最近申请了一个长假,一个人背着包出去自助游了。
  路上,他经过了一个小镇,发现小镇的人们都围在一棵树下争吵。Alex上前询问情况,得知小镇的人们正缺一个镇长,他们希望能选一个知名又公正的镇长,即,大家希望能选出一个人,所有人都认识他,但同时他不认识镇上除自己以外的其他人(在此,我们默认每个人自己认识自己)。可是小镇里的人太多了,一下子大家谁也说服不了谁。
  “这简单啊。” Alex 表示。于是他一下子统计出来了镇上人们相互之间的认识关系,并且一下子找到了合适的镇长人选。
  现在你手上也拿到了这样一份认识关系的清单。其中上面给出的认识关系是单向的,即,A认识B与B认识A是相互独立的,只给出A认识B就不能认为B认识A,例如,我认识你,你不一定认识我。而且,这里的认识关系也不具有传递性,即,A认识B,B认识C,但这不代表A认识C。同时,为了方便处理,这份清单中,镇上的N个人依次编号为1到N。你能否像桂一样快速找到合适的镇长人选呢?

输入描述与输出描述:

/**
 * 选镇长,
 * input:   数据组数T---------------------------- 1行
 *             本组人数n 互相认识关系数m--- 1行
 *             A认识B,B认识C,...------------------ m行【注意:可能存在自己认识自己】
 * 
 * output:  分为T组,每组2行
 *                 适合人选数--------------1行
 *                 编号 编号 编号...-------- 1行【空格相隔】
 */            

 思路:

镇长需要满足的要求就是: 

1、所有人都认识镇长(入度=n-1)

2、镇长不认识任何人(出度=0)

使用2个长度为n的数组,来分别统计每个人的出度和入度。 

另外,注意碰到自己认识自己的输入,直接跳过。



360笔试的时候,一直提示超出内存限制,过了笔试之后,仔细审题,才明白了原因。我在笔试的时候,用了二维数组,用二维数组去存储两个人之间的关系,这样人很多的时候,当然会超过内存限制啊!!!
    存储人与人之间的关系,一定要用二维数组吗?
    再仔细读题,成为镇长的条件是:别人都认识他,然而他不认识别人。这样,如果A为镇长,则认识他的关系数必为n-1(这里的n为人数)。
    而且输入的时候,输入了几组人与人之间的认识情况:Ai Bi(Ai认识Bi)
    设想我们是不是只用一个数组表示这些认识与被认识的关系,代码中用relations[i]存取,认识自己则i++,自己认识别人则i--,即处理一条人数关系如下:
    relations[Ai--];
    relations[Bi++];

    由此再遍历relations[]数组,判断处理即可。

import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
 
/**
 * 关键在于relations[]数组的存取,并不一定使用二维数组
 */
public class Main {
    public static void main(String[] args) {
        Scanner scn = new Scanner(System.in);
        int T = scn.nextInt(); // 测试数据组数
        for (int i = 0; i < T; i++) {
            int n = scn.nextInt(); // 人数
            int m = scn.nextInt(); // 关系数
            boolean isOffical = true;
 
            // 存在镇长,首先至少要有n-1条关系,因为至少要有n-1个人都认识同一个人
            if (m < n - 1) {
                System.out.println(0);
                System.out.println();
                isOffical = false;
            }
            /*
             * 存取这n个人对应的认识关系数,别人认识自己的个数-自己认识别人的个数
             */
            int[] relations = new int[n + 1]; 
            for (int j = 0; j < m; j++) {
                // out表示自己认识别人
                int out = scn.nextInt();
                // in表示别人认识自己
                int in = scn.nextInt();
                if (isOffical) {
                    if (out != in) {
                        relations[out]--;
                        relations[in]++;
                    }
                }
            }
 
            if (!isOffical) { // 该组不存在镇长
                continue;
            }
 
            // 存储符合条件的镇长
            List<Integer> list = new ArrayList<Integer>();
            for (int j = 1; j < relations.length; j++) {
                if (relations[j] == n - 1) {
                    list.add(j);
                }
            }
 
            System.out.println(list.size());
            if (list.size() != 0) {
                for (int j = 0; j < list.size() - 1; j++) {
                    System.out.print(list.get(j) + " ");
                }
                System.out.print(list.get(list.size()-1));  // 最后一个输出没有空格
            }
            System.out.println();
        }
        scn.close();
    }
}

===============================================================

来一个传统的朋友圈问题

A与B相识,B与C相识,可以说A与C间接相识

那么ABC组成一个朋友圈,D同学没人认识,D自己一个圈

用户自定义输入每人所认识的人

求:有几个朋友圈

思路:利用深度优先搜索

查找朋友圈的算法如下,测试类可自行编写

package Bytedance;

public class FriendsCircle {
	public void dfs(int[][] M, int[] visited, int i) {
		for (int j = 0; j < M.length; j++) {
			if (M[i][j] == 1 && visited[j] == 0) {
				visited[j] = 1;
				dfs(M, visited, j);
			}
		}
	}

	public int findCircleNum(int[][] M) {
		int[] visited = new int[M.length];
		int count = 0;
		for (int i = 0; i < M.length; i++) {
			if (visited[i] == 0) {
				dfs(M, visited, i);
				count++;
			}
		}
		return count;
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值