使用电子显微镜实验和深度学习解释识别岩石孔隙结构和渗透率
Abstract 摘要
方法
- 通过基于人工智能的图像语义分割,分析孔隙特征
- 通过基于深度学习框架,分析砂岩微观孔隙特征和宏观渗透率参数之间的关系
结果+结论
- 该方法解决了传统图像识别方法的局限性(例如扫描电子显微镜SEM图像中无法获得完整的孔隙空间特征、分割效果差、分割精度低)
- 该方法可充分发挥图像准确识别的优势,实现显微图像的自动处理,显著提高岩样孔隙识别的准确性。
2Method:基于深度学习的语义分割
2.1 FCN
解决了图像大小与输出预测图大小不一致的问题。