Identification of rock pore structures and permeabilities using electron and deep learning

本文介绍了一种基于深度学习的岩石孔隙结构分析方法。利用人工智能进行图像语义分割,解决了传统方法在扫描电子显微镜图像处理上的局限性,提高了孔隙特征识别的准确性,并探讨了孔隙特征与渗透率之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Abstract 摘要

方法

  1. 通过基于人工智能的图像语义分割,分析孔隙特征
  2. 通过基于深度学习框架,分析砂岩微观孔隙特征和宏观渗透率参数之间的关系

结果+结论

  1. 该方法解决了传统图像识别方法的局限性(例如扫描电子显微镜SEM图像中无法获得完整的孔隙空间特征、分割效果差、分割精度低)
  2. 该方法可充分发挥图像准确识别的优势,实现显微图像的自动处理,显著提高岩样孔隙识别的准确性。

2Method:基于深度学习的语义分割

2.1 FCN

解决了图像大小与输出预测图大小不一致的问题。

2.2基于FCN的语义分割

3Method:基于深度学习的页岩电镜孔隙识别

3.1图像识别数据生成

3.2砂岩的SEM图像识别的训练

3.3砂岩的自动化分割

4结果和分析

4.1 基于深度学习的砂岩孔隙渗透系数计算

4.2 计算结果及与其他方法的比较

5.结论

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五阿哥爱跳舞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值