【MDPI】MDPI论文投稿全流程实例讲解

本文提供了一份详细的MDPI期刊投稿流程指南,包括选择期刊、下载模板、填写基本信息、上传稿件等步骤,并分享了一次因重复率过高被拒稿的经历。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

选期刊

https://www.mdpi.com/journal/cells
在这里插入图片描述
点击Submiet to Cells后注册并登陆投稿系统

下载期刊投稿模版

MDPI官方给提供了旗下期刊的统一的Latex模版,如果随时要换旗下的其它期刊的话,用统一模版方便重新提交,如果不用的话,就每次都要去找对应期刊的word或者latx模版。
MDPI统一Latex模版官方下载地址

期刊word模版下载地址的位置:
Cells期刊模版下载位置
在这里插入图片描述

投稿

在投稿页也会有word模版
在这里插入图片描述
一步一步投稿即可,没有很绕和很复杂的地方。
如果有什么不明白的,欢迎留言。

第一步 :文章基本信息

在这里插入图片描述
在这里插入图片描述

第二步:作者信息

注意,最好不要用QQ邮箱

第三步:推荐审稿人(5个)

第四步:上传论文和cover letter

第五步:确认发票邮箱和确认投稿

状态更新

  1. 等待审核
    在这里插入图片描述
  2. 被拒稿(2个周)
    分享一下最终的拒稿原因,经过了多个编辑之后才知道,重复率超过了30%,MDPI对于重复率过高的文件会直接被系统判定拒稿,因此需要查重复(经过某系统检测后和期刊给的检测结果一致,确实超过30),降低到21%之后再次投稿就会进入审稿阶段了,不会被直接拒绝。
    拒稿邮件内容如下:
    We are writing to inform you that we will not be able to process your submission further.Submissions sent for peer-review are selected on the basis of discipline, novelty and general significance, in addition to the usual criteria for publication in scholarly journals. Therefore, our decision is not necessarily a reflection of the quality of your work.

后续将重润色后投稿其他期刊被录用。

### MDPI Sensors 投稿流程 MDPI Sensors 是由 MDPI 出版的一本开放获取期刊,专注于传感器科学和技术领域。以下是关于该期刊的投稿流程及相关细节: #### 1. **稿件准备** 在提交论文之前,作者应仔细阅读并遵循 MDPI 的《作者指南》[^2]。这包括但不限于以下方面: - 稿件结构:通常需要包含摘要、关键词、引言、方法、结果、讨论以及结论部分。 - 文件格式:建议使用 Microsoft Word 或 LaTeX 编写文档,并按照模板调整布局[^3]。 - 图表质量:所有图表需达到出版标准,分辨率不低于300 DPI。 #### 2. **在线提交系统** MDPI 使用其专属的在线平台进行稿件管理。注册账户后,可以通过此链接访问投稿页面[^4]。登录到个人账号下完成新稿件上传操作。 #### 3. **同行评审过程** 一旦收到完整的初稿文件,编辑部会先做初步筛选以确认是否符合基本接收条件。如果通过,则进入正式审查阶段——邀请外部专家参与匿名评议工作。整个周期大约持续数周至几个月不等,具体取决于所选主题范围内的活跃审者数量及其反馈速度[^5]。 #### 4. **修订与再提交** 根据审稿人的意见,可能需要对原作做出相应修改后再重新递交最终版本给主编审核批准。这一环节也可能涉及多轮沟通直至满足全部学术要求为止。 #### 5. **费用说明** 需要注意的是,成功录用后的每篇文章都将被收取一定的Article Processing Charge(APC),用于支持开放存取模式下的运营成本覆盖。对于Sensors而言,默认收费标准约为2600瑞士法郎(CHF)[^6],不过某些情况下可能存在折扣政策或者豁免机会(如来自特定合作机构的研究人员)。 ```python # 示例Python脚本展示如何自动化处理CSV数据作为补充材料之一 import pandas as pd data = {'Title': ['Paper Title'], 'Abstract': ['This is an abstract']} df = pd.DataFrame(data) def save_to_csv(df, filename="submission.csv"): df.to_csv(filename, index=False) save_to_csv(df) ``` 上述代码片段仅作为一个简单的例子来演示可以随附于技术报告中的数据分析程序样例。 ---
评论 125
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五阿哥爱跳舞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值