引言
在构建基于大语言模型(LLM)的应用程序时,调试是不可避免的一环。无论是模型调用失败、输出格式错误,还是嵌套调用导致的意外输出,调试都是确保应用程序正常运行的关键步骤。本文旨在介绍调试LLM应用的三种主要方法:使用详尽模式、调试模式和LangSmith跟踪机制。
主要内容
1. 使用详尽模式(Verbose Mode)
详尽模式通过添加打印语句帮助开发者观察链中"重要"事件的发生。这种方法不需要额外的工具支持,可以直接在本地环境中运行,但不能保存事件记录。
2. 使用调试模式(Debug Mode)
调试模式会记录链中所有事件的日志。与详尽模式相比,它提供了更详细的数据输出,包括每一个微小的输入和输出,适合对复杂链条进行深度检查。不过,它同样不能持久化记录。
3. LangSmith跟踪
LangSmith提供了可视化界面来查看所有事件的详细流程,帮助开发者在视图中更直观地理解链条运行情况,这对于复杂的LLM应用至关重要。开发者需要设置环境变量以启用LangSmith跟踪功能。
export LANGCHAIN_TRACING_V2="true"
export LANGCHAIN_API_KEY="..."
如果在笔记本环境中,可以通过以下代码进行设置:
import getpass
import os
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
代码示例
下面是一个使用LangSmith进行调试的示例:
from langchain.agents import AgentExecutor, create_tool_calling_agent
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_core.prompts import ChatPromptTemplate
tools = [TavilySearchResults(max_results=1)]
prompt = ChatPromptTemplate.from_messages(
[
("system", "You are a helpful assistant."),
("placeholder", "{chat_history}"),
("human", "{input}"),
("placeholder", "{agent_scratchpad}"),
]
)
# 构建工具代理
agent = create_tool_calling_agent(llm, tools, prompt)
# 创建代理执行器并传入代理和工具
agent_executor = AgentExecutor(agent=agent, tools=tools)
agent_executor.invoke(
{"input": "Who directed the 2023 film Oppenheimer and what is their age in days?"}
)
常见问题和解决方案
-
调用失败或未响应
- 检查API连接状态。由于一些地区的网络限制,开发者可能需要使用API代理服务来确保稳定的连接。
-
输出结果不准确
- 确保输入数据正确,或者尝试不同的模型参数设置。
-
跟踪信息过于冗长
- 根据需求选择使用详尽模式或调试模式,以获取适当细节层次的日志。
总结与进一步学习资源
调试LLM应用程序可以通过多种方式进行优化。开发者应根据应用复杂度选择合适的调试方法。深入了解LangSmith等工具可以帮助开发者更好地管理和维护其应用。
进一步学习资源:
参考资料
- LangChain Documentation
- LangSmith Official Guide
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—