探索Google Cloud Vertex AI:集成生成式API与模型园

引言

在现代软件开发中,生成式AI已经成为提升生产力的重要工具。Google Cloud的Vertex AI平台通过提供生成式API和模型园,将Google的强大AI技术直接带给开发者。本文将探讨Vertex AI的核心功能,如生成式API的使用、模型部署和多模态支持,并提供实用的代码示例来帮助初学者和专业人士使用这些强大的工具。

主要内容

什么是Vertex AI?

Vertex AI是Google Cloud上的一项服务,旨在简化机器学习和AI项目的开发和部署。它提供了多种预训练模型,支持文本生成、代码生成、多模态等应用场景。通过生成式API,开发者可以轻松调用这些模型实现复杂的AI任务。

安装与设置

要开始使用Vertex AI生成式API,您需要安装相应的Python库,如langchain-google-vertexai。同时,确保您的环境已配置好Google Cloud的认证信息。以下是安装步骤:

%pip install --upgrade --quiet langchain-core langchain-google-vertexai

确保您已经配置了服务帐号的JSON凭证,并将其路径存储为GOOGLE_APPLICATION_CREDENTIALS环境变量,以确保库可以正常访问您的Google Cloud项目。

使用生成式API

对于文本生成,Vertex AI提供多种模型可以选择,例如Gemini、Palm 2和Codey。以下是使用Gemini模型生成文本的示例:

from langchain_google_vertexai import VertexAI

# 使用Gemini模型进行文本生成
model = VertexAI(model_name="gemini-pro"
<think>嗯,用户之前问的是关于标注工具和模型输出的工具,但用户现在澄清说他其实想要的是不需要编码的工具,覆盖标注、训练和模型输出整个流程。首先,我需要确认用户的需求是找到一个端到端的解决方案,无需编写代码,可能用户是非技术人员或者希望快速上手。 用户之前得到的回答虽然详细,但包含了很多命令行和Python代码的例子,这可能让用户觉得需要编程知识。现在用户明确需要无需编码的工具,我应该调整推荐,专注于图形界面(GUI)工具和云服务平台。 首先,标注工具方面,之前提到的Label Studio和CVAT都有Web界面,适合无需编码的用户。可能需要更强调它们的可视化操作和团队协作功能,比如Label Studio的拖放标注和预标注模型,CVAT的自动化跟踪。同时,可以推荐一些更简单的工具,比如Makesense.ai,这是一个在线工具,完全免费,不需要安装,适合快速标注。 训练工具方面,需要寻找提供可视化训练的平台。Roboflow和GoogleVertex AI是不错的选择,特别是Roboflow,用户上传数据后可以自动生成训练集,选择模型架构,调整参数通过界面完成,然后一键训练。Teachable Machine也是一个很好的例子,用户可以通过网页上传图片,选择分类或检测模型,然后训练,导出模型,完全不需要代码。 模型输出和分析工具方面,需要推荐有可视化结果展示和性能评估的工具。Hugging Face的Spaces可以部署模型并创建交互式演示,用户上传图片即可看到检测结果。FiftyOne适合查看数据集和模型预测结果,支持可视化分析混淆矩阵和错误案例。这些工具通常提供图形界面,用户可以通过点击操作完成大部分任务。 另外,用户可能需要端到端的平台,比如Azure Custom Vision或Apple的Create ML,这些平台允许从标注到训练再到部署都在一个界面内完成,适合没有编程背景的用户。例如,Azure Custom Vision可以上传图片,在线标注,训练模型,测试性能,并直接部署到云端或移动端,整个过程无需编写代码。 还需要考虑用户的系统环境,是否有偏好本地软件还是云端服务。本地软件如LabelImg虽然需要安装,但操作简单,而云端服务则无需安装,但可能需要网络连接。同时,免费和付费选项的区分也很重要,比如Roboflow的免费版有数量限制,但可能足够小项目使用。 最后,总结时需要将这些工具分类,明确每个步骤(标注、训练、输出)的可视化工具,并给出推荐组合,比如使用Makesense.ai标注,Roboflow训练,Hugging Face Spaces展示结果。同时提醒用户注意数据隐私,云端服务可能需要考虑数据安全性,本地工具则更可控。</think>以下是无需编程的完整视觉模型开发工具推荐,覆盖数据标注、模型训练、结果分析的完整流程: --- ### **一、全流程可视化工具推荐** #### **1. 零代码标注工具** | 工具名称 | 特点 | 适用场景 | 访问方式 | |---------|------|---------|---------| | **Makesense.ai** | 纯网页操作<br>支持拖放标注<br>自动导出YOLO格式 | 小型项目快速标注 | [makesense.ai](https://www.makesense.ai) | | **CVAT在线版** | 视频逐帧标注<br>多人协作审阅<br>预标注加速 | 专业级视频标注 | [cvat.org](https://cvat.org) | | **Label Studio云服务** | AI辅助预标注<br>文本/图像混合标注<br>版本历史管理 | 复杂多模态数据 | [labelstud.io/cloud](https://labelstud.io/cloud) | *操作示例(Makesense.ai):* 1. 上传图片 → 创建类别标签(如"dog") 2. 拖动画框 → 自动保存标签文件 3. 一键打包下载(含图片+txt标签) --- #### **2. 可视化训练平台** | 平台名称 | 核心功能 | 免费额度 | 访问方式 | |---------|--------|---------|--------| | **Roboflow Train** | 自动数据增强<br>可视化训练监控<br>手机端模型测试 | 免费3千张训练 | [roboflow.com](https://roboflow.com) | | **Google Vertex AI** | 预置YOLOv5/v8<br>自动调参优化<br>性能对比报告 | 每月$300赠金 | [cloud.google.com](https://cloud.google.com) | | **Teachable Machine** | 浏览器内训练<br>实时摄像头测试<br>导出TF Lite模型 | 完全免费 | [teachablemachine.withgoogle.com](https://teachablemachine.withgoogle.com) | *Roboflow训练流程:* 1. 上传数据集 → 自动划分训练/验证集 2. 选择模型类型(YOLOv8s等) 3. 滑动条调整迭代次数 4. 实时查看训练损失曲线 5. 下载模型或部署为API --- #### **3. 模型输出分析工具** | 工具名称 | 功能特色 | 数据兼容性 | 访问方式 | |---------|---------|-----------|---------| | **FiftyOne** | 可视化混淆矩阵<br>错误案例聚类分析<br>属性分布直方图 | COCO/YOLO格式 | [voxel51.com](https://voxel51.com) | | **Hugging Face Spaces** | 在线演示构建器<br>交互式结果对比<br>用户反馈收集 | 所有主流格式 | [huggingface.co/spaces](https://huggingface.co/spaces) | | **Edge Impulse Studio** | 实时摄像头测试<br>逐层激活可视化<br>硬件性能分析 | 移动端优化模型 | [edgeimpulse.com](https://www.edgeimpulse.com) | *FiftyOne操作演示:* 1. 导入验证集 → 加载模型预测结果 2. 筛选低置信度样本 3. 按错误类型排序(如将猫误判为狗) 4. 导出问题样本用于改进 --- ### **二、推荐工具组合方案** #### **方案1:快速原型开发** ```mermaid graph LR A[Makesense.ai标注] --> B[Roboflow训练] --> C[Hugging Face演示] ``` #### **方案2:企业级部署** ```mermaid graph LR A[CVAT标注] --> B[Vertex AI训练] --> C[FiftyOne分析] ``` --- ### **三、特殊场景解决方案** #### **1. 移动端开发** - **Apple Create ML**:Mac专属工具,可视化训练Core ML模型,直接集成到iOS App - **Fritz AI**:手机端实时模型更新,支持OTA(Over-the-Air)模型推送 #### **2. 工业检测** - **V7 Darwin**:自动缺陷标注,支持3D点云2D图像融合标注 - **Siemens Teamcenter**:CAD数据联动,自动生成合成训练数据 --- ### **四、注意事项** 1. 数据隐私:云端平台需注意敏感数据加密(本地工具推荐Label Studio开源版) 2. 格式兼容:确认导出格式目标设备匹配(如Android用TFLite,iOS用CoreML) 3. 性能调优:使用平台自带的模型压缩工具(如Roboflow的"Deploy to Device"选项) 通过上述工具组合,即使没有编程基础的用户,也可以在1小时内完成从数据标注到模型部署的全流程操作。建议从Makesense.ai + Teachable Machine的免费组合开始体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值