雪落无声360
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
87、脑疾病预测方法:缺血性中风分割与弥漫性胶质瘤术前生存预测
本文介绍了一种基于深度学习的缺血性中风分割方法和弥漫性胶质瘤术前生存预测方法。针对缺血性中风分割,提出多上下文和多分割交叉注意力编解码器架构,提高分割的准确性和可靠性;对于弥漫性胶质瘤术前生存预测,则通过集成肿瘤亚型分类网络和引入序数流形混合特征增强方法,解决了数据不平衡问题并显著提升了预测准确性。文章还探讨了两种方法的实际应用潜力与未来研究方向,为脑疾病的诊断和治疗提供了重要参考。原创 2025-07-16 10:17:57 · 7 阅读 · 0 评论 -
86、医学图像分割:创新方法与卓越成果
本文介绍了两种创新的医学图像分割方法及其卓越成果。第一种是用于 ICE 分割的实用编辑方法,通过引入编辑损失,在总体误差和远区域误差控制方面显著优于现有基线模型,并具有良好的顺序编辑适应性。第二种是针对缺血性中风的跨域表示分割方法,采用多模态注意力机制和多分割损失策略,有效提升了病变估计的准确性和泛化能力。两种方法在临床诊断和治疗中具有广泛的应用前景,并为未来的研究提供了发展方向。原创 2025-07-15 15:44:31 · 7 阅读 · 0 评论 -
85、从稀疏到精确:心腔内超声心动图分割的实用编辑方法
本文提出了一种针对心腔内超声心动图(ICE)数据的交互式编辑框架,旨在解决左心房分割不准确的问题。通过将用户在2D帧上的涂鸦交互映射到3D网格,并采用特定的损失函数和评估指标,该方法能够在保留已编辑区域的同时提高分割准确性。实验表明,该框架在712名患者的数据集上表现优异,具有广泛的临床应用前景,并可推广至其他医学影像领域。原创 2025-07-14 10:40:53 · 6 阅读 · 0 评论 -
84、基于条件扩散模型的弱监督医学图像分割方法
本文介绍了一种基于条件扩散模型(CDM)的新型弱监督医学图像分割方法。该框架通过最大化与类别相关区域的变化并最小化背景中的噪声,显著提升了分割性能和时间效率。在脑肿瘤和肾脏分割任务中,该方法优于现有弱监督语义分割技术,如GradCAM、ScoreCAM等,并展示了良好的临床应用潜力。原创 2025-07-13 11:46:10 · 5 阅读 · 0 评论 -
83、头颈部危险器官的多模态 CT 和 MR 分割
本文提出了一种用于医学图像分割的模态融合模块(MFM),该模块能够实现多模态数据的空间对齐,并在缺失模态的情况下仍表现出良好的性能。基于nnU-Net架构,MFM通过伪配准技术融合CT和MR特征图,显著提升了头颈部危险器官(OAR)的分割准确性和鲁棒性。实验表明,MFM在多模态分割中表现优异,尤其是在缺失一种模态时,其性能接近单模态模型,优于其他先进方法。原创 2025-07-12 11:12:42 · 3 阅读 · 0 评论 -
82、医学图像分割技术:神经隐式分割函数与多模态融合模块
本文介绍了两种先进的医学图像分割方法:神经隐式分割函数(NISF)和多模态融合模块(MFM)。NISF能够有效处理高维稀疏数据,不受图像形状和分辨率变化的影响,在心脏MRI分割任务中表现出色;而MFM则通过优化多模态特征的空间对齐,提升了CT与MR图像的头颈部危险器官分割准确性,并在缺少某一模态时仍具有良好的鲁棒性。文章详细分析了两种技术的优势、实验结果以及面临的挑战,并探讨了它们的应用前景与发展方向。原创 2025-07-11 10:34:21 · 2 阅读 · 0 评论 -
80、利用文本提示改进胸部X光图像感染区域分割
本研究提出了一种利用文本提示改进胸部X光图像感染区域分割的多模态方法。通过设计的GuideDecoder模块,实现了文本和图像特征的有效融合,提高了分割性能。实验结果表明,该方法在准确性、Dice系数和Jaccard系数等指标上优于传统的单模态方法和之前的多模态方法LViT。此外,该方法具有灵活性高、信息融合有效等优势,在医学临床领域具有巨大的实际应用潜力。原创 2025-07-09 09:44:55 · 2 阅读 · 0 评论 -
79、DOMINO++:提升深度学习泛化能力的领域感知损失正则化方法
本文介绍了DOMINO++,一种提升深度学习模型分布外(OOD)泛化能力的领域感知损失正则化方法。通过结合专家指导和数据指导知识,并引入动态缩放与自适应正则化机制,DOMINO++在医学图像分割任务中表现出卓越的性能,尤其在处理不同扫描设备和噪声、旋转等干扰条件下具有显著优势。文章详细阐述了该方法的技术原理、实验验证及潜在应用场景,并展望了其未来发展方向。原创 2025-07-08 13:17:55 · 2 阅读 · 0 评论 -
78、进化归一化优化提升语义分割网络性能
本文提出了一种基于进化优化的神经架构搜索方法 evoNMS,通过动态选择和组合不同的归一化方法来提升 U-Net 在医学图像语义分割任务中的性能。evoNMS 在十一个生物医学数据集上进行了评估,并与多种固定归一化策略及先进模型 nnU-Net 进行了比较。结果表明,实例归一化(IN)在多数场景下表现优异,而批量归一化(BN)和无归一化(NoN)则因梯度问题表现较差。研究还发现,成像模态与特定归一化方法之间没有强相关性,强调了针对具体数据集进行优化的重要性。原创 2025-07-07 16:06:20 · 3 阅读 · 0 评论 -
77、H-DenseFormer:用于多模态肿瘤分割的高效混合密集连接Transformer
本文提出了一种高效的混合模型H-DenseFormer,结合了卷积神经网络(CNN)和Transformer的优势,专门用于多模态肿瘤分割任务。通过引入多路径并行嵌入(MPE)模块和密集连接Transformer(DCT)模块,H-DenseFormer在保证计算效率的同时显著提升了分割性能。实验结果表明,该方法在HECKTOR21和PI-CAI22两个数据集上均优于现有先进方法,在Dice相似系数、Jaccard指数和95% Hausdorff距离等评估指标上表现优异。原创 2025-07-06 16:54:00 · 2 阅读 · 0 评论 -
76、基于证据识别去噪扩散概率模型的多模态医学图像肿瘤分割可靠性学习
本文提出了一种基于证据识别去噪扩散概率模型(EI-DDPM)的多模态医学图像肿瘤分割方法。该方法结合了Dempster-Shafer理论和上下文折扣机制,通过证据识别层(EIL)和上下文折扣算子(CDO)解析不同模态医学图像信息的可靠性,并据此整合多模态数据进行更精确的肿瘤分割。实验结果表明,EI-DDPM在BraTS 2021和肝脏MRI数据集上均优于现有方法,具有较高的Dice分数和临床辅助潜力。原创 2025-07-05 11:33:07 · 2 阅读 · 0 评论 -
75、A2FSeg:用于医学图像分割的自适应多模态融合网络
本文提出了一种用于不完全多模态医学图像分割的新型网络结构——A2FSeg,该网络通过平均融合和基于注意力机制的自适应融合两个阶段有效整合不同模态的特征。在BraTS2020数据集上的实验表明,该方法在全肿瘤、肿瘤核心和增强肿瘤的平均Dice系数分别达到89.79%、82.72%和66.71%,优于当前最先进的MFI等方法。模型设计简单高效,在处理模态缺失问题上展现出良好的鲁棒性和性能优势。原创 2025-07-04 15:09:12 · 1 阅读 · 0 评论 -
74、UPCoL:用于半监督医学图像分割的不确定性感知原型一致性学习
本文提出了一种新的半监督医学图像分割框架UPCoL,通过不确定性感知的原型一致性学习,充分利用有标签和无标签数据的信息。该方法在多个医学数据集上展现出优于现有技术的性能,尤其在有限标注数据的情况下表现出色。原创 2025-07-03 09:19:57 · 5 阅读 · 0 评论 -
73、用于多模态非对比 MRI 肝脏肿瘤量化、分割与不确定性预测的边缘感知多任务网络
本研究提出了一种基于边缘感知多任务网络(EaMtNet)的新方法,首次在多模态非对比MRI上实现了肝脏肿瘤的多指标量化、分割和不确定性预测。通过引入Sobel滤波器提取边缘信息,并结合创新的边缘感知特征聚合(EaFA)模块,EaMtNet能够有效捕捉长距离依赖关系,提升多模态特征融合效果。实验结果表明,该模型在分割(Dice系数达90.01%)和量化(平均绝对误差显著低于现有方法)方面均优于当前先进方法,为肝脏肿瘤的临床诊断提供了一个省时、可靠且稳定的工具。原创 2025-07-02 13:03:19 · 5 阅读 · 0 评论 -
72、ConvFormer:用于改善医学图像分割的即插即用CNN风格Transformer
本文提出了一种用于医学图像分割的即插即用CNN风格Transformer模块——ConvFormer,旨在解决传统Transformers在小规模医学数据上存在的注意力崩溃问题。通过结合CNN的局部性和Transformers的全局依赖建模能力,ConvFormer实现了更高效的特征提取和稳定的性能提升。实验表明,ConvFormer在多个医学图像数据集(如ACDC、ISIC 2018和ICH)上均取得了优异的表现,并可广泛应用于心脏疾病诊断、皮肤病变检测和血肿分割等临床场景。原创 2025-07-01 15:41:36 · 2 阅读 · 0 评论 -
71、基于贝叶斯频率重新参数化的3D核扩展用于医学图像分割
本文提出了一种基于贝叶斯频率重新参数化的3D大核卷积网络RepUX-Net,用于医学图像分割。通过将空间频率建模为贝叶斯先验,并对卷积核中的每个元素进行可变收敛调整,该方法在多个体积数据集上实现了优于当前最先进网络的性能。实验表明,RepUX-Net在直接训练和迁移学习场景下均具有显著的优势,为医学图像分割领域提供了新的解决方案。原创 2025-06-30 15:38:41 · 5 阅读 · 0 评论 -
70、用于医学图像分割的扩散变压器 U-Net
本文提出了一种用于医学图像分割的扩散变压器 U-Net 模型,结合扩散模型和基于变压器的 U-Net 结构,通过交叉注意力模块对齐噪声和源图像的特征嵌入,实现了更精确的像素级分割。实验表明,该方法在多个医学图像数据集上均优于当前先进模型,具有良好的泛化能力和分割性能。原创 2025-06-29 11:25:17 · 4 阅读 · 0 评论 -
69、医学图像分割模型的认证:随机平滑与扩散概率模型的结合
本博客介绍了一种结合随机平滑与扩散概率模型(DDPM)的医学图像认证分割方法。该方法利用现成的去噪和分割模型,无需专门训练鲁棒性模型即可实现高精度、抗攻击的医学图像分割认证。通过在多个公开数据集上的实验验证,该方法在不同噪声水平下均能提供较高的认证Dice分数和平均交并比(mIoU),展示了其在医学图像处理中的有效性和鲁棒性。此外,该研究为未来扩展到3D医学成像和认证分类领域提供了基础框架。原创 2025-06-28 09:39:59 · 3 阅读 · 0 评论 -
68、RCS - YOLO与医学图像分割模型认证:高效准确的目标检测与鲁棒性保障
本文介绍了两种在医学影像领域具有重要应用价值的技术:RCS-YOLO和医学图像分割模型认证。RCS-YOLO是一种高效准确的医学目标检测器,通过引入RCS-OSA模块,在提升检测精度的同时显著降低了计算复杂度。实验结果表明,其推理速度优于现有YOLO系列模型,并在脑肿瘤检测数据集上表现出色。另一方面,医学图像分割模型认证技术结合随机平滑与扩散模型,为分割模型在对抗攻击下的鲁棒性提供保障,确保医疗AI系统的可靠性。这两项技术在临床诊断、医学研究和医疗服务中具有广泛的应用前景。原创 2025-06-27 12:22:28 · 2 阅读 · 0 评论 -
67、医学图像检测新突破:自监督学习与RCS - YOLO模型解析
本文探讨了自监督学习在医学图像3D到2D分割中的应用,以及RCS-YOLO模型在脑肿瘤检测中的突破性表现。研究展示了自监督学习如何提升分割性能,并分析了RCS-YOLO的架构创新及其在Br35H数据集上的优越检测速度和准确性。这些技术为医学图像领域的发展提供了新的方向。原创 2025-06-26 13:04:05 · 1 阅读 · 0 评论 -
66、用于高效标签3D到2D分割的自监督学习方法
本文提出了一种用于高效标签3D到2D医学图像分割的自监督学习方法。基于改进的ReSensNet架构,结合新颖的3D到2D特征投影块和模态重建策略,该方法在视网膜OCT图像中实现了对地理萎缩(GA)和网状假性玻璃膜疣(RPD)病变的精确正面分割。通过引入自监督预训练机制,利用SLO/FAF图像作为辅助监督源,显著提升了在标记数据稀缺情况下的分割性能。实验结果表明,与现有技术相比,该方法在GA分割任务中取得了明显的性能提升,并为3D到2D分割问题提供了一种有效的解决方案。代码已公开,具备应用于其他医学图像分析任原创 2025-06-25 10:11:02 · 5 阅读 · 0 评论 -
65、多镜头原型对比学习与语义推理在医学图像分割中的应用
本文提出了一种用于医学图像分割的新型少样本分割方法 MPSNet,通过多镜头原型对比学习与语义推理网络的设计,显著提升了分割性能。MPSNet 在三个公共医学图像数据集上取得了优于现有技术的性能,并通过消融研究验证了其组成部分的有效性。该方法在临床诊断和医学研究中具有广泛的应用前景。原创 2025-06-24 11:57:12 · 5 阅读 · 0 评论 -
64、SimPLe:用于DCE - MRI中弱监督乳腺癌分割的相似性感知传播学习
本文提出了一种简单而有效的弱监督学习方法SimPLe,用于动态对比增强磁共振成像(DCE-MRI)中的乳腺癌分割。该方法通过极值点标注生成初始伪掩码,并结合相似性感知传播学习策略优化分割网络。实验结果表明,SimPLe在分割性能上优于现有弱监督方法,并接近全监督方法的水平,同时显著减少了标注工作量。原创 2025-06-23 09:08:36 · 3 阅读 · 0 评论 -
63、反对抗一致性正则化:用于语义分割的新型数据增强方法
本文介绍了一种基于反对抗一致性正则化(AAC)的新型数据增强方法,专门用于医学图像的语义分割。通过对象级扰动和自适应一致性正则化,该方法在保留关键区域语义信息的同时,增强了模型对挑战性样本的判别能力。实验结果表明,该方法在多个医学图像数据集上均优于现有数据增强技术,为医学图像分析提供了一种高效且有潜力的新方案。原创 2025-06-22 15:57:36 · 2 阅读 · 0 评论 -
62、医学图像分割:多方法创新与性能提升
本博文探讨了医学图像分割领域的两种创新方法:一是多标注者预测方法,通过改进的U-Net架构和多次推理平均策略,在QUBIQ基准数据集上实现了性能突破;二是抗对抗一致性正则化的数据增强方法,通过对象级别的对抗扰动和一致性约束,有效缓解了医学图像分割中的数据短缺和过拟合问题。这两种方法在各自的应用场景中均表现出卓越的性能,为医学图像分割提供了新的思路和技术支持。原创 2025-06-21 13:38:53 · 2 阅读 · 0 评论 -
61、医学图像分割:深度概率轮廓框架与扩散模型的多专家共识预测
本文介绍了两种医学图像分割领域的创新方法:深度概率轮廓框架中的KsPC-Net和基于扩散模型的多专家共识预测方法。KsPC-Net通过改进的Dice损失函数和概率轮廓生成,在头颈部肿瘤分割任务中表现出优越性能,包括更高的Dice分数和召回率,同时提供用于不确定性量化和剂量规划的概率轮廓。另一方面,扩散模型驱动的多专家共识预测方法能够有效处理多专家标注差异,提升分割结果的准确性和可靠性,适用于多种医学图像模态和复杂疾病场景。文章还探讨了两种方法的优势、潜在应用场景以及未来研究方向,为医学诊断和治疗提供了强有力原创 2025-06-20 15:06:14 · 1 阅读 · 0 评论 -
60、医学图像分割与剂量规划的创新技术
本文探讨了医学图像分割与剂量规划中的两种创新技术。首先,介绍了KsPC-Net模型,它结合卷积神经网络(CNN)和核平滑概率轮廓(KsPC)方法,在肿瘤分割中表现出色,并能提供用于剂量规划的概率轮廓。其次,提出了SAPAN网络,该模型通过结构解耦和自适应部件对齐机制,在无监督域适应线粒体分割任务中有效应对领域差距问题。这些新技术有望在放射治疗及其他医学影像应用中提升分割精度和规划效率。原创 2025-06-19 12:09:12 · 1 阅读 · 0 评论 -
59、医学图像分割:持续学习与自适应网络的创新突破
本文综述了医学图像分割领域的最新进展,重点介绍了基于持续学习的方法在任务增量分割中的应用以及结构解耦自适应部分对齐网络(SAPAN)在线粒体分割中的创新突破。通过解决灾难性遗忘和域差距问题,这些方法在多个实验中展现了优异的性能,为医学图像分析提供了新的技术思路和应用前景。原创 2025-06-18 12:13:01 · 2 阅读 · 0 评论 -
58、基于非典型样本选择的持续医学图像分割的记忆重放
本文提出了一种基于非典型样本选择的持续医学图像分割方法,旨在解决医学图像分割中因数据分布变化和成像协议差异导致的灾难性遗忘问题。通过基于正类的排名(PCR)和基于梯度的排名(GBR)机制,结合梯度加类分数(GPCS)采样方法,该方法在优化内存使用的同时显著提升了模型性能。实验结果表明,该方法在多个医学图像分割任务中均表现出优越的准确性和泛化能力,为持续学习在医学图像分析中的应用提供了新的思路。原创 2025-06-17 14:52:00 · 3 阅读 · 0 评论 -
57、DBTrans:用于多模态医学图像分割的端到端模型
本文提出了一种名为 DBTrans 的端到端模型,专门用于多模态医学图像分割。该模型通过双分支的编码器和解码器层,结合 Shifted-W-MSA、Shuffle-W-MCA 和 Shifted-W-MCA 等机制,在不增加额外计算成本的情况下有效捕捉局部与全局依赖关系。同时,DBTrans 改进了 SE-Net 中的通道注意力机制,动态融合不同模态信息,提升了分割性能。在 BraTS2021 数据集上的实验表明,DBTrans 在平均 Dice 分数和 95% Hausdorff 距离方面均优于现有方法,原创 2025-06-16 16:57:33 · 2 阅读 · 0 评论 -
56、医学图像分割的创新模型:Bernoulli扩散模型与DBTrans
本文介绍了两种创新的医学图像分割模型:Bernoulli扩散模型(BerDiff)和DBTrans。BerDiff利用Bernoulli噪声作为扩散核,实现了准确且多样化的二元分割任务,适用于肺部CT扫描等医学图像分析。DBTrans则是一种双分支视觉Transformer,专门用于3D空间对齐多模态MRI脑肿瘤分割任务,通过局部分支和全局分支设计以及改进的通道注意力机制,提升了分割性能。实验结果表明,这两种模型在多个数据集上均表现出了卓越的性能,为医学图像分割提供了新的技术手段和研究方向。原创 2025-06-15 16:27:00 · 2 阅读 · 0 评论 -
55、医学图像分割新方法:EGE - UNet与BerDiff模型解析
本文介绍了两种创新的医学图像分割模型:EGE-UNet和BerDiff。EGE-UNet通过引入Hadamard积注意力机制(HPA)和组聚合桥模块(GAB),降低了计算复杂度并提高了分割性能,特别适用于皮肤病变分割等任务;而BerDiff则采用伯努利噪声作为扩散核,生成准确且多样化的分割掩码,在处理医学图像分割中的不确定性和多样性方面表现出色。两者为医学图像分割提供了新的解决方案,并在未来临床应用中具有广泛前景。原创 2025-06-14 10:58:29 · 4 阅读 · 0 评论 -
53、半监督类别不平衡深度学习在MRI分割及猕猴脑图像中的应用
本博文探讨了半监督类别不平衡深度学习在MRI分割中的应用,以及协作分割-生成框架在早期发育猕猴脑MR图像模态生成和组织分割中的使用。针对像素级注释稀缺和类别不平衡问题,提出了结合原型更新(PC)、CRS伪标签优化及H-UNet网络的半监督方法,并在心脏MRI数据集ACDC和MMWHS上验证其优越性能。此外,为解决猕猴脑图像模态缺失与低对比度难题,设计了包含模态生成模块(MGM)和组织分割模块(TSM)的协作框架CSGF,通过跨模块特征共享(CFS)实现相互促进的模态生成与分割。两种方法分别在医学影像分析中展原创 2025-06-12 11:40:07 · 1 阅读 · 0 评论 -
52、医学图像分割中的创新算法:MDViT与半监督类别不平衡学习
本文介绍了医学图像分割领域的两种创新算法:MDViT和半监督类别不平衡深度学习方法。MDViT通过聚合多领域知识,引入领域适配器和相互知识蒸馏技术,缓解了视觉Transformer在小数据集上的局限性。半监督类别不平衡深度学习方法则结合原型分类器和多级树滤波器,有效解决了数据稀缺和类别不平衡问题,尤其在心脏MRI分割任务中表现优异。这些方法为医学图像分割提供了更强大的工具,推动了医学诊断和研究的发展。原创 2025-06-11 16:20:55 · 1 阅读 · 0 评论 -
51、MDViT:用于小医学图像分割数据集的多领域视觉Transformer
本文介绍了一种用于小医学图像分割数据集的多领域视觉Transformer模型MDViT。通过引入领域适配器(DA)和相互知识蒸馏(MKD)策略,MDViT有效地缓解了视觉Transformer(ViTs)在训练数据不足时的表现问题,并解决了多领域训练中的负知识转移(NKT)问题。实验表明,MDViT在多个皮肤病变分割数据集上表现优异,具有良好的分割性能和广阔的应用前景。原创 2025-06-10 15:32:49 · 4 阅读 · 0 评论 -
50、二分类医学图像分割的指导性特征增强
本文提出了一种用于二分类医学图像分割的指导性特征增强方法(IFE),并构建了一个大规模数据集Cosmos55k用于基准测试。IFE通过基于曲率或信息熵的量化方法选择具有指导性的特征通道,并将其与原始特征结合,以提升分割网络的性能。实验结果表明,该方法在多个网络架构和医学图像分割任务中均表现出色,提高了模型的准确性和通用性。原创 2025-06-09 16:25:45 · 2 阅读 · 0 评论 -
49、医学边界扩散模型:革新皮肤病变分割的新方法
本文介绍了一种创新的皮肤病变分割方法——医学边界扩散模型(MB-Diff)。该模型通过将病变分割问题转化为边界演变过程,结合高效的多尺度图像引导和基于演变不确定性的融合策略,在处理多尺度、边界模糊的皮肤病变时表现出色。实验结果表明,MB-Diff在多个评估指标上优于其他现有方法,具有较高的准确性和可靠性,为皮肤病变的临床诊断和治疗规划提供了高效、精准的解决方案。原创 2025-06-08 15:32:42 · 1 阅读 · 0 评论 -
48、医学图像分割新进展:SwinUNETR-V2与医学边界扩散模型
本文介绍了两种最新的医学图像分割方法:SwinUNETR-V2和医学边界扩散模型(MB-Diff)。SwinUNETR-V2基于改进的Swin Transformer,结合卷积与自注意力机制,在多个3D医学图像数据集上表现出色。而MB-Diff则通过边界演化过程实现对皮肤病变的精确分割,尤其在处理复杂边界时效果显著。这两种方法为医学图像分割提供了新的思路和技术支持。原创 2025-06-07 15:01:09 · 4 阅读 · 0 评论 -
47、医学图像分割新进展:MedNeXt与SwinUNETR-V2技术解析
本文详细解析了医学图像分割领域的两项创新技术:MedNeXt和SwinUNETR-V2。MedNeXt通过UpKern技术和复合缩放策略,在有限数据场景下有效克服了大核网络的性能饱和问题,显著提升了分割精度。而SwinUNETR-V2则通过引入阶段卷积设计,增强了模型对局部特征和长距离依赖关系的建模能力,大幅提升了Transformer在医学图像分割中的性能表现。两种方法分别结合了卷积神经网络与Transformer的优势,为医学图像分割提供了更高效、准确的解决方案,并展示了在临床疾病诊断、手术规划和医学研原创 2025-06-06 14:48:01 · 3 阅读 · 0 评论 -
46、医学图像分割:AMCNet与MedNeXt的创新解决方案
本文介绍了两种用于医学图像分割的创新方法:AMCNet和MedNeXt。AMCNet通过自适应多维特征融合机制和解剖约束损失,有效解决了手部骨骼的细粒度分割问题,并基于此开发了用户友好的3D Slicer模块,方便临床应用。而MedNeXt则针对医学图像分割中缺乏大规模标注数据的问题,提出了一种受Transformer启发的大核分割网络,包括全ConvNeXt 3D架构、残差ConvNeXt重采样块、UpKern技术和复合缩放策略。实验结果表明,这两种方法在多个任务上均表现出色,为医学图像分割领域提供了高效原创 2025-06-05 13:13:20 · 1 阅读 · 0 评论