norm 取模长(二范数)
向量取模
∥x∥2=∑i=1Nxi2
\|\mathbf{x}\|_2=\sqrt{\sum_{i=1}^Nx_i^2}
∥x∥2=i=1∑Nxi2
矩阵弗罗贝尼乌斯范数(Frobenius Norm)
∥A∥F≡∑i=1m∑j=1n∣aij∣2
\|\mathrm{A}\|_F\equiv\sqrt{\sum_{i=1}^m\sum_{j=1}^n\left|a_{ij}\right|^2}
∥A∥F≡i=1∑mj=1∑n∣aij∣2
normalize 单位化——修改原向量 返回void
normalized 单位化——不修改原向量 返回同类型
Eigen::Vector2d Va(3, 4);
Eigen::Vector2d Vb;
cout << Va.norm() << endl; // 5
Va.normalize(); // Va 被单位化了
cout << "Va " << Va.transpose() << endl; // 0.6 0.8
Va << 3, 4;
Vb = Va.normalized(); // Va没有被改变, Vb为单位化的Va
cout << "Va " << Va.transpose() << endl; // 3 4
cout << "Vb " << Vb.transpose() << endl; // 0.6 0.8