技术栈选择
后端框架:Spring Boot 2.7.x/3.x,提供快速开发、自动化配置和嵌入式服务器支持,整合Spring Security实现权限控制。
数据库:MySQL 8.0或PostgreSQL,支持事务和复杂查询;Redis用于缓存考勤统计数据和会话管理。
前端技术:Vue.js 3 + Element Plus(或React + Ant Design),构建响应式单页应用;ECharts用于可视化考勤报表。
其他工具:Lombok简化代码,Swagger生成API文档,Quartz或XXL-JOB处理定时考勤统计任务。
功能模块设计
1. 核心考勤功能
- 员工打卡:支持GPS定位、Wi-Fi打卡、人脸识别(集成第三方SDK如旷视、商汤)。
- 请假/加班申请:多级审批流程(BPMN引擎如Activiti),自动关联薪资模块。
- 排班管理:灵活配置班次、节假日规则,支持批量导入。
2. 数据统计与分析
- 实时出勤率看板:按部门、个人维度展示迟到/早退/缺勤数据。
- 月度报表导出:PDF/Excel格式,自定义统计周期。
3. 系统管理
- RBAC权限模型:角色区分管理员、HR、部门主管、普通员工。
- 日志审计:记录关键操作如权限变更、考勤修正。
关键代码示例
打卡接口(Spring Boot)
@RestController
@RequestMapping("/api/attendance")
public class AttendanceController {
@PostMapping("/check-in")
public ResponseEntity<Result> checkIn(@RequestBody CheckInDTO dto,
@AuthenticationPrincipal User user) {
// 验证打卡位置是否在允许范围内(如公司半径500米)
if (!locationService.validate(dto.getLatitude(), dto.getLongitude())) {
throw new BusinessException("超出有效打卡范围");
}
attendanceService.saveRecord(user.getId(), dto.getCheckInTime());
return ResponseEntity.ok(Result.success());
}
}
考勤规则配置(数据库设计)
CREATE TABLE `attendance_rule` (
`id` BIGINT PRIMARY KEY AUTO_INCREMENT,
`department_id` BIGINT COMMENT '适用部门',
`work_start_time` TIME NOT NULL COMMENT '标准上班时间',
`work_end_time` TIME NOT NULL,
`flexible_minutes` INT DEFAULT 30 COMMENT '弹性时间阈值'
);
测试策略
单元测试:使用JUnit 5 + Mockito测试Service层逻辑,例如:
@Test
void testCheckInWithInvalidLocation() {
CheckInDTO dto = new CheckInDTO(39.999, 116.999); // 模拟无效坐标
when(locationService.validate(anyDouble(), anyDouble())).thenReturn(false);
assertThrows(BusinessException.class, () -> controller.checkIn(dto, mockUser));
}
集成测试:通过TestContainers启动真实数据库容器,验证API接口与数据库交互。
压力测试:JMeter模拟高并发打卡场景(如上午9:00集中打卡),监测响应时间与数据库负载。
部署与监控
容器化:Docker + Kubernetes集群部署,配置HPA自动扩缩容应对打卡高峰。
监控:Prometheus采集JVM指标,Grafana展示考勤API的P99延迟。
注意:实际开发需结合具体需求调整技术方案,例如国企可能要求国产化数据库(达梦、人大金仓),外企可能需要多语言支持。