系统架构设计
采用分层架构设计,包括数据采集层、存储层、处理层和应用层。Django作为Web框架提供RESTful API,Celery处理异步任务,Pandas/NumPy进行数据清洗,Spark或Dask可扩展至大规模数据处理。
# Django项目结构示例
power_analysis/
├── core/ # 核心业务逻辑
├── data_processing/ # 数据处理模块
│ ├── cleaners.py # 数据清洗
│ └── analyzers.py # 分析算法
├── api/ # 数据接口
└── visualization/ # 可视化模块
数据采集与存储
使用Scrapy或Requests库对接智能电表API/SCADA系统,数据存储方案根据规模选择:
- 时序数据:InfluxDB/TimescaleDB
- 关系型数据:PostgreSQL(Django ORM支持)
- 大规模非结构化:HDFS + Hive
# 示例:Django模型定义时序数据
from django.db import models
class PowerConsumption(models.Model):
timestamp = models.DateTimeField(db_index=True)
meter_id = models.CharField(max_length=32)
voltage = models.FloatField()
current = models.FloatField()
class Meta:
ordering = ['-timestamp']
数据分析模块
实现典型电力分析功能:
- 负荷预测(ARIMA/LSTM)
- 用电异常检测(Isolation Forest)
- 峰谷分析(K-means聚类)
# 示例:使用Prophet进行负荷预测
from prophet import Prophet
def forecast_demand(df):
model = Prophet(seasonality_mode='multiplicative')
model.fit(df.rename(columns={'timestamp':'ds', 'load':'y'}))
future = model.make_future_dataframe(periods=24*7, freq='H')
return model.predict(future)
可视化实现
结合前端技术栈:
- ECharts.js/Vega-Lite实现动态图表
- Django模板渲染或分离式前端(React/Vue)
- 地图可视化使用GeoPandas+Leaflet
# Django视图返回JSON数据示例
from django.http import JsonResponse
def load_curve(request):
data = PowerConsumption.objects.filter(...)
return JsonResponse({
'timestamps': [d.timestamp.isoformat() for d in data],
'values': [d.load for d in data]
})
性能优化策略
- 数据缓存:Redis缓存高频查询结果
- 异步处理:Celery处理耗时分析任务
- 查询优化:数据库分区+索引
- 增量处理:设计Delta Lake模式
# Celery任务示例
@app.task(bind=True)
def async_analysis(self, task_id):
from .analyzers import run_complex_analysis
return run_complex_analysis(task_id)
安全与权限控制
- 基于Django-RBAC实现多级权限
- JWT认证API访问
- 数据加密:使用PyCryptodome处理敏感字段
- 审计日志:记录所有数据操作
# 权限装饰器示例
from django.contrib.auth.decorators import permission_required
@permission_required('data.view_rawdata')
def raw_data_api(request):
...
该设计可根据实际需求扩展,10kV以下配电网系统建议采用轻量级架构,省级调度系统需引入Kafka+Flink流处理框架。关键是根据数据规模选择合适的技术组合,平衡实时性与分析深度需求。
系统架构设计
采用分层架构设计,包括数据采集层、存储层、处理层和应用层。Django作为Web框架提供RESTful API,Celery处理异步任务,Pandas/NumPy进行数据清洗,Spark或Dask可扩展至大规模数据处理。
# Django项目结构示例
power_analysis/
├── core/ # 核心业务逻辑
├── data_processing/ # 数据处理模块
│ ├── cleaners.py # 数据清洗
│ └── analyzers.py # 分析算法
├── api/ # 数据接口
└── visualization/ # 可视化模块
数据采集与存储
使用Scrapy或Requests库对接智能电表API/SCADA系统,数据存储方案根据规模选择:
- 时序数据:InfluxDB/TimescaleDB
- 关系型数据:PostgreSQL(Django ORM支持)
- 大规模非结构化:HDFS + Hive
# 示例:Django模型定义时序数据
from django.db import models
class PowerConsumption(models.Model):
timestamp = models.DateTimeField(db_index=True)
meter_id = models.CharField(max_length=32)
voltage = models.FloatField()
current = models.FloatField()
class Meta:
ordering = ['-timestamp']
数据分析模块
实现典型电力分析功能:
- 负荷预测(ARIMA/LSTM)
- 用电异常检测(Isolation Forest)
- 峰谷分析(K-means聚类)
# 示例:使用Prophet进行负荷预测
from prophet import Prophet
def forecast_demand(df):
model = Prophet(seasonality_mode='multiplicative')
model.fit(df.rename(columns={'timestamp':'ds', 'load':'y'}))
future = model.make_future_dataframe(periods=24*7, freq='H')
return model.predict(future)
可视化实现
结合前端技术栈:
- ECharts.js/Vega-Lite实现动态图表
- Django模板渲染或分离式前端(React/Vue)
- 地图可视化使用GeoPandas+Leaflet
# Django视图返回JSON数据示例
from django.http import JsonResponse
def load_curve(request):
data = PowerConsumption.objects.filter(...)
return JsonResponse({
'timestamps': [d.timestamp.isoformat() for d in data],
'values': [d.load for d in data]
})
性能优化策略
- 数据缓存:Redis缓存高频查询结果
- 异步处理:Celery处理耗时分析任务
- 查询优化:数据库分区+索引
- 增量处理:设计Delta Lake模式
# Celery任务示例
@app.task(bind=True)
def async_analysis(self, task_id):
from .analyzers import run_complex_analysis
return run_complex_analysis(task_id)
安全与权限控制
- 基于Django-RBAC实现多级权限
- JWT认证API访问
- 数据加密:使用PyCryptodome处理敏感字段
- 审计日志:记录所有数据操作
# 权限装饰器示例
from django.contrib.auth.decorators import permission_required
@permission_required('data.view_rawdata')
def raw_data_api(request):
...
该设计可根据实际需求扩展,10kV以下配电网系统建议采用轻量级架构,省级调度系统需引入Kafka+Flink流处理框架。关键是根据数据规模选择合适的技术组合,平衡实时性与分析深度需求。