神经网络BP算法求代码
输入节点数为3x3x5=45,输出节点数为3x3+2=11,隐节点数通过试凑法得出。BP神经网络的Matlab代码见附件,修改节点数、增加归一化和反归一化过程即可。
BP算法,误差反向传播(ErrorBackPropagation,BP)算法。BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。
由于多层前馈网络的训练经常采用误差反向传播算法,人们也常把将多层前馈网络直接称为BP网络。
1)正向传播:输入样本->输入层->各隐层(处理)->输出层注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。
谷歌人工智能写作项目:神经网络伪原创
bp神经网络算法 在matlab中的实现 5
写作猫。
BP神经网络是最基本、最常用的神经网络,Matlab有专用函数来建立、训练它,主要就是newff()、train()、sim()这三个函数,当然其他如归一化函数mapminmax()、其他net的参数设定(lr、goal等)设置好,就可以通过对历史数据的学习进行预测。
附件是一个最基本的预测实例,本来是电力负荷预测的实例,但具有通用性,你仔细看看就明白了。
bp神经网络预测代码 15
在