🌟 LLM 不再只是聊天机器人,它正在变成一套操作系统,而你要学会如何调配它的「系统调用」。
🧩 一、为什么我们需要“能力地图”?
用大模型写诗、写邮件已经太简单。但当你开始想让它干“正事”时,比如:
-
查数据库、看业务文档、给客户回邮件、填报工单……
-
甚至自动做成日报、同步 Slack、触发后续流程……
你会发现:光靠 prompt,不够用了。
于是,LLM 应用工程化出现了这几大关键词:
-
Tool Calling(工具调用)
-
RAG(检索增强生成)
-
Agent(任务代理系统)
-
插件机制(对话式扩展接口)
这些能力之间互有关联又有区别,接下来我们来画一张能力地图,帮你掌握全局。
🧱 二、四大核心能力模块结构图
┌──────────────┐
│ 基础模型(LLM) │
└──────────────┘
│
┌───────┼────────┐
▼ ▼ ▼
Tool Call RAG Memory
│ │ │
▼ ▼ ▼
Agent ←───┴───→ 插件系统
理解图示:大模型是底层,Tool Call / RAG / Memory 是能力增强模块,Agent 是调度控制器,插件是对外集成机制。
🔧 三、Tool Calling:让模型“动起手来”
Tool Calling(工具调用)是指:
“大模型识别出任务类型,自动调用你定义的外部函数、API 或系统工具来完成任务。”
🧠 它的本质是:语义到动作的映射(NL2Function)
🧪 示例:
用户输入:
"帮我查一下 6 月销售额,并画一张折线图"
模型输出的 tool call:
{
"tool_name": "query_sales_data",
"parameters": { "month": "2024-06" }
}
你可以配置工具如:
-
query_sales_data
-
generate_chart
-
send_email
🌍 用在哪里?
-
智能客服(调 CRM 接口)
-
内部助手(接企业工具链)
-
代码执行(像 Copilot)
📖 四、RAG:不懂就去查资料
Retrieval-Augmented Generation 的核心理念是:“模型不知道?那我去查。”
RAG 的作用是:为模型实时注入外部知识,让它不被知识盲区困住。
🛠️ 它包括两步:
-
根据用户问题向知识库(向量数据库)检索相关文档片段
-
把结果拼成上下文一起喂给 LLM
🎯 典型场景:
-
企业文档问答
-
合同内容抽取
-
行业知识融合(医疗、法律、财务)
🧠 提示:RAG 不是知识库本身,而是一种“动态喂知识”的机制。
🧠 五、Agent:思考、拆解、执行的智能体
如果说 Tool 和 RAG 是“手和眼”,那 Agent 就是“脑”。
Agent 是什么?
是一套可以思考、做规划、调用工具、检查结果、重复尝试的任务执行流。
你可以让它完成这样的链条任务:
查库存 → 判断是否足够 → 如果不足,生成邮件通知采购
Agent 的关键组成:
-
思维循环(例如 ReAct)
-
任务记忆(Memory)
-
工具调用能力(Tool Call)
-
状态控制器(Workflow Manager)
🔄 它能“学会失败重试”,不像传统代码一错即终。
🔌 六、插件机制:给模型装 App
还记得 GPT-4 的插件功能吗?你点开对话框,可以:
-
查航班
-
点外卖
-
看网页内容
这背后的底层逻辑,其实就是一种标准化的外部接口集成机制。
现在,不少厂商(OpenAI、Claude、DeepSeek)都推出了自家的插件或技能系统。
开发者能怎么用?
-
给你的 LLM 应用加“知识模块”
-
接入第三方服务
-
构建“AI 工作台”
🌐 类比一下:插件机制 ≈ 给大模型配“浏览器扩展”。
🧩 七、能力组合方式参考(典型应用)
应用场景 | 能力组合 |
---|---|
企业内部问答系统 | RAG + Tool Call |
智能 BI 报表生成 | Tool Call + Agent |
财务机器人审批流程 | Agent + Tool + Memory |
聊天式 CRM 工具 | Plugin + RAG + Agent |
AI 编程助手 | Tool + Memory + Code Agent |
智能体工作流执行系统 | Agent + MCP + RAG + Tool |
🗂️ 八、开发者视角:从 Prompt 到系统的演进路线
-
Prompt 时代:写指令、调模型,适合单步任务。
-
RAG 增强:引入知识片段,适合问答与检索类。
-
Tool 驱动:模型开始动手,处理结构化任务。
-
Agent 驱动:具备“多轮执行+规划”能力,任务链变复杂。
-
插件系统:让模型具备调用任何服务的可能,构建 AI 工作台。
✅ 九、总结:这张能力地图的价值
💡 写代码的人要开始转向“调系统的工程师”了。
当你学会组合 Tool + RAG + Agent,你构建的不再是对话,而是一个“自适应任务执行体”。
未来的 LLM 应用,就像一个“会听指令的操作系统”。你要做的,是定义它的 API、指令集、工具链。