打造你自己的 LLM 接入层:Function Calling、Tools、Router 架构全拆解

站在 Agent 化浪潮前沿,构建一个通用、可拓展的 LLM 中间层,已成为 AI 应用开发的核心能力之一。


背景:为什么需要“LLM 接入层”?

在 AI 应用开发逐渐从“Prompt Hack”阶段迈入“系统集成”阶段后,越来越多团队面临以下挑战:

  • 如何统一不同大模型(OpenAI、DeepSeek、阿里通义等)的调用方式?

  • 如何在多模型之间进行请求路由、质量评估与回退切换?

  • 如何让 LLM 拥有调用外部工具、函数与插件的能力?

  • 如何保障安全、权限、可控性?

这就需要我们设计一个“LLM 接入层”,即通过抽象模型能力、封装函数调用协议、构建路由与日志体系,实现模型之间、模型与工具之间的解耦对接。


核心能力一:Function Calling 协议适配

1. 什么是 Function Calling?

Function Calling 是 OpenAI 首创的一种接口协议,允许你将函数结构(函数名、参数定义、说明)作为 JSON Schema 传入模型,让模型“主动调用”你提供的函数。

2. 通用接口封装

为不同模型统一 Function Calling 协议,你需要设计一层中间协议,比如:

{
  "name": "search_documents",
  "description": "基于关键词搜索知识库中的文档片段",
  "parameters": {
    "type": "object",
    "properties": {
      "query": { "type": "string" }
    },
    "required": ["query"]
  }
}

然后在后端解析模型返回的函数调用请求,并转化为对应的业务 API 调用。

3. 多模型支持

  • OpenAI 支持原生 Function Calling

  • DeepSeek 支持 tool_call 格式(与 OpenAI 兼容)

  • Claude 采用工具描述文本解析方式

  • 自定义模型(如 API 网关前置)可通过 prompt 模拟 Function Calling


核心能力二:Tools 工具系统

Function Calling 是协议,Tools 是能力容器。

1. 什么是 Tool?

Tool 本质是一个受控函数,包含元信息(描述、调用方式、权限)与实际的执行逻辑。其注册方式有两种:

  • 静态注册:如 langchain.tools 工具集合

  • 动态发现:如插件注册机制(AutoGen / OpenAgents)

2. Tool 的作用

  • 把 LLM 从被动应答变为“具身智能”(Embodied Intelligence)

  • 支持调用数据库、搜索引擎、RPA 工具、企业 API 等能力

  • 实现 Agent 的感知-决策-行动闭环

3. Tool 的封装建议

能力建议封装方式是否幂等
知识搜索查询类 Tool
文件上传任务类 Tool否(建议加 Task ID)
发邮件事务类 Tool否(建议加防重标识)

核心能力三:Router 路由与模型切换策略

在生产环境中,我们往往需要根据请求类型、预期延迟、成本控制等条件,对模型进行动态选择。

1. 路由策略

策略类型描述
静态路由明确指定使用哪个模型(开发调试阶段)
规则路由根据任务类型、token 数、语言选择模型
动态评估基于模型质量打分 + 历史表现进行模型选择

2. 路由实现方式

  • 定义 Router 接口,如:route(request) -> model_name

  • 结合链式调用:先用 LLM A 做摘要,再用 LLM B 做扩展

  • 设定模型优先级与 fallback 链路:如 GPT-4 首选,Claude 备选


统一封装:打造你的接入层 SDK

结合上述三项能力,可以将“LLM 接入”抽象为统一的 SDK,包括:

  • Tool: 注册与调用工具的类接口

  • FunctionSpec: 函数调用协议规范

  • Router: 动态模型选择与多模型负载均衡

  • LLMClient: 封装调用接口,支持 token 控制、日志记录、异常处理

class LLMClient:
    def __init__(self, router, tools):
        self.router = router
        self.tools = tools

    def chat(self, messages):
        model = self.router.route(messages)
        return call_model(model, messages, tools=self.tools)

未来演进:向 AgentHub 与多智能体系统演进

LLM 接入层不仅是调用封装,更是智能体系统的基础:

  • 可扩展为 AgentHub(支持多个智能体协作)

  • 与权限系统、日志系统、调试工具集成

  • 支持用户画像与上下文管理(Memory)

  • 支持“模型热插拔”能力,接入 Mistral、百川、Qwen 等国产模型


总结

打造一个好用的 LLM 接入层,不是造轮子,而是为你的 AI 能力打下坚实的工程地基。Function Calling 是沟通语言,Tools 是能力封装,Router 是调度中枢,它们共同构成了一个“可组合、可编排、可观察”的 LLM 编排平台。

这一层不光服务一个项目,而是你面向未来所有 AI 应用的“统一接入层”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值