站在 Agent 化浪潮前沿,构建一个通用、可拓展的 LLM 中间层,已成为 AI 应用开发的核心能力之一。
背景:为什么需要“LLM 接入层”?
在 AI 应用开发逐渐从“Prompt Hack”阶段迈入“系统集成”阶段后,越来越多团队面临以下挑战:
-
如何统一不同大模型(OpenAI、DeepSeek、阿里通义等)的调用方式?
-
如何在多模型之间进行请求路由、质量评估与回退切换?
-
如何让 LLM 拥有调用外部工具、函数与插件的能力?
-
如何保障安全、权限、可控性?
这就需要我们设计一个“LLM 接入层”,即通过抽象模型能力、封装函数调用协议、构建路由与日志体系,实现模型之间、模型与工具之间的解耦对接。
核心能力一:Function Calling 协议适配
1. 什么是 Function Calling?
Function Calling 是 OpenAI 首创的一种接口协议,允许你将函数结构(函数名、参数定义、说明)作为 JSON Schema 传入模型,让模型“主动调用”你提供的函数。
2. 通用接口封装
为不同模型统一 Function Calling 协议,你需要设计一层中间协议,比如:
{
"name": "search_documents",
"description": "基于关键词搜索知识库中的文档片段",
"parameters": {
"type": "object",
"properties": {
"query": { "type": "string" }
},
"required": ["query"]
}
}
然后在后端解析模型返回的函数调用请求,并转化为对应的业务 API 调用。
3. 多模型支持
-
OpenAI 支持原生 Function Calling
-
DeepSeek 支持 tool_call 格式(与 OpenAI 兼容)
-
Claude 采用工具描述文本解析方式
-
自定义模型(如 API 网关前置)可通过 prompt 模拟 Function Calling
核心能力二:Tools 工具系统
Function Calling 是协议,Tools 是能力容器。
1. 什么是 Tool?
Tool 本质是一个受控函数,包含元信息(描述、调用方式、权限)与实际的执行逻辑。其注册方式有两种:
-
静态注册:如 langchain.tools 工具集合
-
动态发现:如插件注册机制(AutoGen / OpenAgents)
2. Tool 的作用
-
把 LLM 从被动应答变为“具身智能”(Embodied Intelligence)
-
支持调用数据库、搜索引擎、RPA 工具、企业 API 等能力
-
实现 Agent 的感知-决策-行动闭环
3. Tool 的封装建议
能力 | 建议封装方式 | 是否幂等 |
---|---|---|
知识搜索 | 查询类 Tool | 是 |
文件上传 | 任务类 Tool | 否(建议加 Task ID) |
发邮件 | 事务类 Tool | 否(建议加防重标识) |
核心能力三:Router 路由与模型切换策略
在生产环境中,我们往往需要根据请求类型、预期延迟、成本控制等条件,对模型进行动态选择。
1. 路由策略
策略类型 | 描述 |
---|---|
静态路由 | 明确指定使用哪个模型(开发调试阶段) |
规则路由 | 根据任务类型、token 数、语言选择模型 |
动态评估 | 基于模型质量打分 + 历史表现进行模型选择 |
2. 路由实现方式
-
定义 Router 接口,如:
route(request) -> model_name
-
结合链式调用:先用 LLM A 做摘要,再用 LLM B 做扩展
-
设定模型优先级与 fallback 链路:如 GPT-4 首选,Claude 备选
统一封装:打造你的接入层 SDK
结合上述三项能力,可以将“LLM 接入”抽象为统一的 SDK,包括:
-
Tool
: 注册与调用工具的类接口 -
FunctionSpec
: 函数调用协议规范 -
Router
: 动态模型选择与多模型负载均衡 -
LLMClient
: 封装调用接口,支持 token 控制、日志记录、异常处理
class LLMClient:
def __init__(self, router, tools):
self.router = router
self.tools = tools
def chat(self, messages):
model = self.router.route(messages)
return call_model(model, messages, tools=self.tools)
未来演进:向 AgentHub 与多智能体系统演进
LLM 接入层不仅是调用封装,更是智能体系统的基础:
-
可扩展为 AgentHub(支持多个智能体协作)
-
与权限系统、日志系统、调试工具集成
-
支持用户画像与上下文管理(Memory)
-
支持“模型热插拔”能力,接入 Mistral、百川、Qwen 等国产模型
总结
打造一个好用的 LLM 接入层,不是造轮子,而是为你的 AI 能力打下坚实的工程地基。Function Calling 是沟通语言,Tools 是能力封装,Router 是调度中枢,它们共同构成了一个“可组合、可编排、可观察”的 LLM 编排平台。
这一层不光服务一个项目,而是你面向未来所有 AI 应用的“统一接入层”。