目录
1.概述
线性回归是一种广泛应用于统计学和机器学习的技术,用于研究两个或多个变量之间的线性关系。在本文中,我们将深入探讨线性回归模型的定义、优缺点、应用场景以及未来展望。
2.线性回归模型的定义
线性回归模型是一种基于线性假设的统计模型,用于预测一个连续型因变量(也称为响应变量)与一个或多个自变量(也称为解释变量)之间的关系。其基本形式为:
其中,表示因变量,
表示自变量,
是待估参数,
是误差项。该模型假设因变量与自变量之间存在线性关系,并且误差项服从正态分布。
目录
线性回归是一种广泛应用于统计学和机器学习的技术,用于研究两个或多个变量之间的线性关系。在本文中,我们将深入探讨线性回归模型的定义、优缺点、应用场景以及未来展望。
线性回归模型是一种基于线性假设的统计模型,用于预测一个连续型因变量(也称为响应变量)与一个或多个自变量(也称为解释变量)之间的关系。其基本形式为:
其中,表示因变量,
表示自变量,
是待估参数,
是误差项。该模型假设因变量与自变量之间存在线性关系,并且误差项服从正态分布。