Description
将1~n建成一棵线段树,构造方法为mid=(l+r)/2(正统)
多次询问[l,r],求所有查询满足l<=x<=y<=r的[x,y]的复杂度之和
n,q<=1e5
Solution
考虑每个节点对答案的贡献
发现当我们把[l,r]放在线段树上后,被完全覆盖的区间的贡献只和询问区间的某个端点有关
分成3种情况考虑,两个端点都在区间内,一个在左边一个在区间内,一个在右边一个在区间内
否则不会被计算到
这样我们就可以预处理,至于未被完全覆盖的有用的区只有O(log n)个,直接暴力即可
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
typedef long long ll;
int read() {
char ch;
for(ch=getchar();ch<'0'||ch>'9';ch=getchar());
int x=ch-'0';
for(ch=getchar();ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
return x;
}
void write(int x) {
if (!x) {puts("0");return;}
char ch[20];int tot=0;
for(;x;x/=10) ch[++tot]=x%10+'0';
fd(i,tot,1) putchar(ch[i]);
puts("");
}
#define max(a,b) (a<b?b:a)
#define min(a,b) (a<b?a:b)
const int N=1e5+5,Mo=1e9+7;
int n,q,c[N<<2],cl[N<<2],cr[N<<2];
void inc(int &x,int y) {
x=x+y;
while (x>=Mo) x=x-Mo;
}
void updata(int v,int l,int r) {
int mid=l+r>>1,len=r-l+1;
inc(cl[v],cl[v<<1]+1);
inc(cl[v],cl[v<<1|1]+r-mid-1);
inc(cl[v],r-l);
inc(cr[v],cr[v<<1|1]+1);
inc(cr[v],cr[v<<1]+mid-l);
inc(cr[v],r-l);
inc(c[v],c[v<<1]);
inc(c[v],c[v<<1|1]);
inc(c[v],(ll)cl[v<<1|1]*(mid-l+1)%Mo);
inc(c[v],(ll)cr[v<<1]*(r-mid)%Mo);
inc(c[v],mid-l);inc(c[v],r-mid-1);
inc(c[v],(ll)len*(len+1)/2%Mo);
}
void build(int v,int l,int r) {
if (l==r) {c[v]=1;return;}
int mid=l+r>>1;
build(v<<1,l,mid);
build(v<<1|1,mid+1,r);
updata(v,l,r);
}
void init() {
n=read();q=read();
build(1,1,n);
}
int ql,qr,ans;
void calc(int v,int l,int r,int x,int y) {
if (l==x&&r==y) {
inc(ans,c[v]);
if (ql<l) inc(ans,(ll)(cl[v]+1)*(l-ql)%Mo);
if (qr>r) inc(ans,(ll)(cr[v]+1)*(qr-r)%Mo);
if (ql<l&&qr>r) inc(ans,(ll)(l-ql)*(qr-r)%Mo);
return;
}
int lpos=max(ql,l),rpos=min(qr,r),len=rpos-lpos+1;
inc(ans,(ll)len*(len+1)/2%Mo);
if (ql<l) inc(ans,(ll)(l-ql)*len%Mo);
if (qr>r) inc(ans,(ll)(qr-r)*len%Mo);
if (ql<l&&qr>r) inc(ans,(ll)(l-ql)*(qr-r)%Mo);
int mid=l+r>>1;
if (y<=mid) calc(v<<1,l,mid,x,y);
else if (x>mid) calc(v<<1|1,mid+1,r,x,y);
else calc(v<<1,l,mid,x,mid),calc(v<<1|1,mid+1,r,mid+1,y);
}
void solve() {
for(;q;q--) {
ql=read();qr=read();
ans=0;calc(1,1,n,ql,qr);
write(ans);
}
}
int main() {
init();
solve();
return 0;
}