[51nod1792]Jabby's segment tree

本文介绍了一种利用线段树解决区间查询问题的方法,并详细分析了查询复杂度。通过预处理完全覆盖的区间和直接处理未完全覆盖的区间,实现了高效查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

将1~n建成一棵线段树,构造方法为mid=(l+r)/2(正统)
多次询问[l,r],求所有查询满足l<=x<=y<=r的[x,y]的复杂度之和
n,q<=1e5

Solution

考虑每个节点对答案的贡献
发现当我们把[l,r]放在线段树上后,被完全覆盖的区间的贡献只和询问区间的某个端点有关
分成3种情况考虑,两个端点都在区间内,一个在左边一个在区间内,一个在右边一个在区间内
否则不会被计算到
这样我们就可以预处理,至于未被完全覆盖的有用的区只有O(log n)个,直接暴力即可

Code

#include <cstdio>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;

typedef long long ll;
int read() {
    char ch;
    for(ch=getchar();ch<'0'||ch>'9';ch=getchar());
    int x=ch-'0';
    for(ch=getchar();ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
    return x;
}
void write(int x) {
    if (!x) {puts("0");return;}
    char ch[20];int tot=0;
    for(;x;x/=10) ch[++tot]=x%10+'0';
    fd(i,tot,1) putchar(ch[i]);
    puts("");
}

#define max(a,b) (a<b?b:a)
#define min(a,b) (a<b?a:b)
const int N=1e5+5,Mo=1e9+7;
int n,q,c[N<<2],cl[N<<2],cr[N<<2];
void inc(int &x,int y) {
    x=x+y;
    while (x>=Mo) x=x-Mo;
}
void updata(int v,int l,int r) {
    int mid=l+r>>1,len=r-l+1;

    inc(cl[v],cl[v<<1]+1);
    inc(cl[v],cl[v<<1|1]+r-mid-1);
    inc(cl[v],r-l);

    inc(cr[v],cr[v<<1|1]+1);
    inc(cr[v],cr[v<<1]+mid-l);
    inc(cr[v],r-l);

    inc(c[v],c[v<<1]);
    inc(c[v],c[v<<1|1]);
    inc(c[v],(ll)cl[v<<1|1]*(mid-l+1)%Mo);
    inc(c[v],(ll)cr[v<<1]*(r-mid)%Mo);
    inc(c[v],mid-l);inc(c[v],r-mid-1);
    inc(c[v],(ll)len*(len+1)/2%Mo);
}
void build(int v,int l,int r) {
    if (l==r) {c[v]=1;return;}
    int mid=l+r>>1;
    build(v<<1,l,mid);
    build(v<<1|1,mid+1,r);
    updata(v,l,r);
}

void init() {
    n=read();q=read();
    build(1,1,n);
}

int ql,qr,ans;
void calc(int v,int l,int r,int x,int y) {
    if (l==x&&r==y) {
        inc(ans,c[v]);
        if (ql<l) inc(ans,(ll)(cl[v]+1)*(l-ql)%Mo);
        if (qr>r) inc(ans,(ll)(cr[v]+1)*(qr-r)%Mo);
        if (ql<l&&qr>r) inc(ans,(ll)(l-ql)*(qr-r)%Mo);
        return;
    }
    int lpos=max(ql,l),rpos=min(qr,r),len=rpos-lpos+1;
    inc(ans,(ll)len*(len+1)/2%Mo);
    if (ql<l) inc(ans,(ll)(l-ql)*len%Mo);
    if (qr>r) inc(ans,(ll)(qr-r)*len%Mo);
    if (ql<l&&qr>r) inc(ans,(ll)(l-ql)*(qr-r)%Mo);
    int mid=l+r>>1;
    if (y<=mid) calc(v<<1,l,mid,x,y);
    else if (x>mid) calc(v<<1|1,mid+1,r,x,y);
    else calc(v<<1,l,mid,x,mid),calc(v<<1|1,mid+1,r,mid+1,y);
}

void solve() {
    for(;q;q--) {
        ql=read();qr=read();
        ans=0;calc(1,1,n,ql,qr);
        write(ans);
    }
}

int main() {
    init();
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值