DeepSeek单轮对话和多轮对话存在多方面区别,具体如下:
- 对话流程:
- 单轮对话:是一次提问与一次回答的简单交互。用户输入问题后,模型根据输入生成回复,对话结束,不涉及后续基于此问题的进一步交流。例如,用户问“北京今天的气温是多少”,模型回复具体温度后,对话即完成。
- 多轮对话:是围绕一个或多个相关主题进行多次交互。用户提出初始问题后,可根据模型的回复继续提问或深入探讨,模型需结合之前的对话历史理解用户意图并生成回复,如用户先问“如何备考英语四级”,模型回复后,用户再问“有没有推荐的词汇书”,模型要基于前面“备考英语四级”的主题及相关回复来作答。
- 上下文依赖:
- 单轮对话:模型无需考虑之前的对话内容,仅依据当前输入的文本信息生成回答,不涉及对上下文的记忆和运用。
- 多轮对话:模型需要依赖上下文,每次生成回复时都要考虑之前所有轮次的对话信息,以便保持对话的连贯性和逻辑性,准确理解用户在多轮交流中的意图变化。
- 数据处理与存储:
- 单轮对话:只需处理当前输入和输出数据,数据量相对较少,无需存储对话历史,处理过程简单。
- 多轮对话:由于要考虑对话历史,需将每轮的用户输入和模型输出都进行存储,并在后续请求时将所有历史数据拼接后传入模型。如DeepSeek的/chat/completions接口是无状态的,每次请求都要包含之前所有对话历史,数据处理和管理更复杂。
- 应用场景:
- 单轮对话:适用于简单的问答场景,如知识查询、简单指令执行等,像查询公交线路、天气情况等,用户获取所需信息后对话结束。
- 多轮对话:更适合复杂的交互场景,如客服咨询、智能聊天、任务型对话等。例如客服场景中,用户可能会多次提问,描述问题细节,模型需根据上下文提供准确解决方案,提供更自然、流畅的交互体验。
- 模型训练方式:
- 单轮对话:训练数据主要是输入输出对,模型学习如何根据输入生成合适的输出,无需特别处理对话轮次相关信息。
- 多轮对话:训练数据需包含多轮对话内容,模型要学习不同轮次间的语义关联和逻辑关系。可将多轮对话拆解为多条样本训练,或直接构造包含所有机器人回复内容的标签进行训练,让模型学会在不同轮次中基于上下文生成回复。