大型IaaS云的性能分析
1. 引言
IaaS云是数据密集型云应用的重要推动者,为管理大数据环境提供必要的计算能力。目前,大多数IaaS云提供商仅在保证可用性方面提供服务级别协议(SLA),但随着云服务需求和普及度的增加,性能SLA在不久的将来也将变得必要。然而,由于硬件、软件、工作负载和管理特性等多种因素的影响,云基础设施的性能分析具有挑战性。
评估云性能通常有三种方法:
1. 实验测量 :受云规模的限制,时间和成本过高。
2. 离散事件模拟 :获得统计上显著的结果可能需要很长时间。
3. 随机模型 :成本较低,但对于大型云系统,随机模型的状态空间可能会变得非常大,导致模型生成和求解困难。
因此,一种可扩展且能保持准确性的建模方法是有意义的。这里将介绍一种可扩展的随机建模方法,通过多个子模型的交互来分析大型IaaS云的性能。
2. 三池云架构
在IaaS云中,物理机(PM)根据功耗和响应时间特性分为三个池:热池、温池和冷池。
- 热池 :所有PM都在运行,需要根据用户请求配置和部署虚拟机(VM)。
- 温池 :PM已开启但未运行,处于节能/睡眠模式,在收到部署请求时开启,部署VM需要额外延迟。
- 冷池 :PM初始处于关闭状态,部署VM需要额外延迟。热池PM的功耗最大,冷池PM的功耗最小。
服务请求是同质的,每个请求为一个具有特定C