22、粗糙集理论中的拟布尔模型与标记演算

粗糙集理论中的拟布尔模型与标记演算

1. 粗糙集理论中的拟布尔模型

在粗糙集理论中,我们可以构建拟布尔代数(qBa)相关的模型。首先,假设有集合 (U)、函数 (g) 和覆盖 (C)。以一个具体例子来说,设 (U)、(g) 和 (C) 如例 1 所定义,那么可以得到以下结果:
|元素 (u) | (N_{g(C)}^d(u)) |
| ---- | ---- |
| (a) | ({e}) |
| (b) | ({e}) |
| (c) | ({d}) |
| (d) | ({c}) |
| (e) | (\varnothing) |

设 (A = {e}),则 (A_{g(C),2} = {a, b, e} \nsubseteq A = {e})。

接下来构建 IqBa2 的粗糙集模型。设 (\langle U, g(C) \rangle) 是一个 (g) - 覆盖近似空间,对于每个 (u \in U),(N_{g(C)}^d(u)) 最多包含 (U) 中的一个元素。此时,(\langle 2^U, \cap, \cup, \neg, \varnothing, U \rangle) 构成一个 qBa,其中对于所有 (A \in 2^U),(\neg A = (g(A))^c)。在 (2^U) 中定义蕴含关系 (\to) 如下:
(A \to B = A^c \cup B)

显然,(A \to B = U) 当且仅当 (A \subseteq B),这样 (\langle 2^U, \cap, \cup, \to, \neg, \varnothing, U \rangle) 就成为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值