粗糙概念逻辑的标记演算
1. 粗糙形式语境的逻辑
- 粗糙形式语境的定义 :粗糙形式语境被定义为元组 $G = (P, E)$,其中 $P = (A, X, I)$ 是一个极性,$E ⊆ A × A$ 是一个等价关系。$E$ 诱导出两个关系 $R□$ 和 $S□$,定义如下:
- 对于任意 $a ∈ A$ 和 $x ∈ X$,$aR□x$ 当且仅当 $∃b(aEb \& bIx)$。
- 对于任意 $a ∈ A$ 和 $x ∈ X$,$aS□x$ 当且仅当 $∀b(aEb ⇒ bIx)$。
- 由于 $E$ 的自反性,有 $S□⊆ I ⊆ R□$,因此 $R□$ 和 $S□$ 可以分别看作是 $I$ 相对于 $E$ 的宽松(上)近似和严格(下)近似。
- 相关引理
- 引理 2 :若 $G = (P, E)$ 是粗糙形式语境,则 $S = J; E$。
- 引理 3 :对于任何极性 $P = (A, X, I)$ 和任何 $I$ - 兼容关系 $E ⊆ A × A$,若其关联的 $S□⊆ A × X$ 是 $I$ - 兼容的,则 $E$ 是自反的当且仅当 $S□⊆ I$;$E$ 是传递的当且仅当 $S□⊆ S□; S□$。
- 逻辑公理 :粗糙形式语境的特征性质可以在模态语言 $L$ 中通过以下公理完全公理化:
- $□ϕ ⊢ ϕ$