直觉主义连接逻辑与拓扑拟布尔逻辑的深入探索
1. 引言
在逻辑研究领域,拓扑准布尔代数(tqBa)是一种带有内部算子的准布尔代数,也被称为德摩根代数。贝尔纳普 - 邓恩四值逻辑(BD)在准布尔代数的研究中已得到了充分发展,而tqBa的逻辑正是模态逻辑S4的准布尔对应物。然而,在tqBa的研究中,模态算子之间的交互公理,如□x ∧♦y ≤♦(x ∧y)和□(x ∨y) ≤□x ∨♦y,尚未得到充分研究。本文聚焦于具有这些交互公理的拓扑准布尔代数,引入对合框架和模型,为相关模态逻辑建立关系语义,并给出离散对偶性,同时探讨了克里普克完备性和有限模型性质。
2. 正常拓扑准布尔逻辑
- 代数定义
- 准布尔代数(qBa):一个代数(A, ∧, ∨, ∼, 0, 1)若满足(A, ∧, ∨, 0, 1)是有界分配格,且∼0 = 1,∼∼x = x,∼(x ∨y) = ∼x ∧∼y,则称其为qBa。
- 拓扑准布尔代数(tqBa):在qBa的基础上,若存在一元算子□: A →A,满足□1 = 1,□(x ∧y) = □x ∧□y,□x ≤x,□□x = □x,则(A, ∧, ∨, ∼, 0, 1, □)为tqBa。
- 正常拓扑准布尔代数(ntqBa):当tqBa满足□x ∧♦y ≤♦(x ∧y)(其中♦x := ∼□∼x)时,称其为ntqBa。
- 逻辑定义
- 公式定义 :设P = {pi : i ∈ω}为可数命