边缘计算赋能的数据传输:大规模交通数据恢复系统设计
在大规模智能交通系统(ITSs)中,交通数据的准确实时恢复至关重要。为解决相关子问题,我们提出了GTR,一个基于边缘计算和低秩理论的大规模交通数据恢复系统。
1. GTR系统概述
GTR系统旨在利用边缘计算和低秩理论,实现大规模ITSs中准确、实时的交通数据恢复。其输入包括ITSs提供的具有时空动态工作负载和大量缺失数据的大规模交通数据,以及交通站点间通信网络的拓扑结构。最终,GTR能实时为大量交通站点输出准确的交通数据。GTR主要由以下三个部分组成:
- 实验探索 :首先基于大规模交通数据集对缺失交通数据进行实验研究,结果表明该问题因高缺失率和普遍性而十分严重。进一步开展广泛实验,研究交通数据的时空相关性,这些实验结果将反馈到后续边缘节点部署方案和交通数据恢复算法的设计中。
- 边缘节点的次优部署 :为解决数据不完整、大规模覆盖和资源密集型交通数据的问题,提出边缘计算赋能的大规模交通数据恢复系统。重点关注边缘节点的最优部署问题,这是一个难以解决的NP难问题。因此,采用问题重述和超模理论来获得具有性能保证的次优解决方案。
- 基于低秩理论的交通数据恢复 :基于奇异值分解(SVD)的低秩实验分析,提出一种基于低秩理论的准确交通数据恢复算法,利用不同时间和站点的交通数据的时空相关性实现准确的数据恢复。
2. 边缘节点的次优部署
2.1 问题重述
在子问题A中,给定任何边缘节点放置方案x,交通数据分配问题是一个简单的线性规划(LP)问题,其最优解